sepharose 4b
Recently Published Documents


TOTAL DOCUMENTS

502
(FIVE YEARS 10)

H-INDEX

47
(FIVE YEARS 2)

Author(s):  
Atul Goyal ◽  
Binh Vu ◽  
Vijay Maranholkar ◽  
Ujwal Patil ◽  
Katerina Kourentzi ◽  
...  

In the manufacture of therapeutic monoclonal antibodies (mAbs), the clarified cell culture fluid is typically loaded onto an initial protein A affinity capture column. Imperfect mass transfer and loading to maximum capacity can risk antibody breakthrough and loss of valuable product, but conservative underloading wastes expensive protein A resin. In addition, the effects of column fouling and ligand degradation require the frequent optimization of IgG loading to avoid wastage. Therefore, continuous real-time monitoring of IgG flowthrough is of great interest. We previously developed a fluorescence-based monitoring technology that allows mix-and-read mAb detection in cell culture fluid. Here we report the use of reporters immobilized on CNBr-activated Sepharose 4B resin for continuous detection of IgG in column breakthrough. The column effluent is continuously contacted with immobilized fluorescein-labeled Fc-binding ligands to produce an immediately detectable change in fluorescence intensity. The technology allows rapid and reliable monitoring of IgG in a flowing stream of clarified cell culture fluid emerging from a Protein A column, without prior sample preparation. We observed a significant change in fluorescence intensity at 0.5 g/L human IgG, sufficient to detect a 5% breakthrough of a 10 g/L load, within 2 minutes at a flow rate of 0.5 mL/min.


2021 ◽  
Author(s):  
Selinnur Yıldız ◽  
Çiğdem Bilen ◽  
Emine Karakuş

Abstract Polyphenol oxidase enzyme, performing browning reactions in fruits and vegetables, was purificated from damson plum (Prunus insititia) which has a high antioxidant activity. Firstly, partially purified polyphenol oxidase was treated by 0-80% ammonium sulfate precipitation and dialysis, respectively. Characterization studies were carried out by using catechol, 4-methyl catechol, pyrogallol and caffeic acid as 0.05M/ pH:7.2/ 25°C; 0.2M/ pH:4.5/ 10°C; 0.01M/ pH:6.8/ 5°C and 0.2M/ pH:8.5/ 10°C, respectively. The kinetic constants of Vmax and KM were calculated for the same substrates as 17219.97 U/(mL*min) and 11.67mM; 7309.72 U/(mL*min) and 5mM; 12580.12 U/(mL*min) and 3.74mM; 12100.41 U/(mL*min) and 6.25 mM, respectively. Catechol gave the highest Vmax value when compared to others. In the second step, purification was performed by using Sepharose 4B-L-Tyrosine-p-amino benzoic acid and Sepharose 6B-L-Tyrosine-p-amino benzoic acid affinity gels. A single band of approximately as 50-55 kDa was observed in SDS-PAGE and Native-PAGE. 90 and 10.2 purification folds were obtained for Prunus insititia PPO by the reference Sepharose-4B-L-Tyrosine-p-aminobenzoic acid and original Sepharose-6B-L-Tyrosine-p-aminobenzoic acid gels, respectively. PPO enzyme purification from Prunus insititia by affinity chromatography has not been investigated in literature yet.


2021 ◽  
Author(s):  
Jian Yang ◽  
Li Liao ◽  
Xin Gao ◽  
Xiaotao Xing ◽  
Haisen Huang ◽  
...  

Abstract Background: Extracellular vesicles (EVs) are membrane encapsulated nanoparticles that function as carriers and play a role in intercellular communication. There are a large number of EVs in the blood and serve as an indicator of pathophysiological conditions. Studies on the basics and application of EVs are hampered by the limitations of current protocols to isolate EVs from blood. However, current isolation methods are difficult to achieve a balance between yield and purity.Results: Firstly, we use Sepharose-4B to build a self-made size exclusion chromatography (SEC) column and perform separation and identification. Then we use the SEC column to systematically compare the efficiency with the most common EV isolation methods: ultracentrifugation (UC) and total exosomes isolation commercial kit (TEI). The EVs isolated through different methods were characterized the yield and size of EVs, analyzed their protein profiles, the morphology and purity were observed under the transmission electron microscope. To further improve the quality and purity, we combined SEC and UC methods and established a two-steps method to isolated EVs from serum.Conclusion: Our study presents the combination of size-exclusion chromatography and ultracentrifugation as a feasible and time-saving method to isolate high quality and purity extracellular vesicles from serum.


Author(s):  
Hongde Li ◽  
Yueshuo Li ◽  
Jianmin Hu ◽  
Sufang Liu ◽  
Xiangjian Luo ◽  
...  

Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) plays an important oncogenic role in the viral latent infection. Recently, increasing evidence indicate that the high expression of LMP1 during EBV lytic cycle is related to the viral lytic replication. However, the mechanism by which LMP1 regulates EBV lytic replication remains unclear. (-)-Epigallocatechin-3-gallate (EGCG) prevents carcinogenesis by directly targeting numerous membrane proteins and effectively inhibits EBV lytic cascade. Here we demonstrated that LMP1 promotes EBV lytic replication through the downstream signal molecules MAPKs, including ERKs, p38, and JNKs. LMP1 induces the phosphorylation of p53 through MAPKs to enhance the ability of wild-type p53 (wt-p53) to activate expression of BZLF1 gene. While the JNKs/c-Jun signal axis appears to be involved in EBV lytic replication induced by LMP1 in p53 mutant manner. And we provided the first evidence that EGCG directly targets the viral membrane LMP1 (Kd =0.36 μM, n=1) using fluorescence quenching, isothermal titration calorimetry (ITC) assay, and CNBR-activated Sepharose 4B pull-down affinity chromatography. Furthermore, we revealed that EGCG inhibits EBV lytic replication via suppressing LMP1 and thus blocking the downstream MAPKs/wt-p53 signal axis in AGS-EBV cells and JNKs/c-Jun signal axis in p53 mutant B95.8 cells. Our study, for the first time, reports the binding and inhibitory efficacy of EGCG to the LMP1 which is a key oncoprotein encoded by EBV. These findings suggest the novel function of LMP1 in the regulation of EBV lytic cycle and reveal the new role of EGCG in EBV-associated malignancies through destroying viral reactivation.


2020 ◽  
Vol 9 (2) ◽  
pp. 104-110
Author(s):  
SunIl Choe ◽  
CholJin Kim ◽  
UnHui Yun ◽  
HyonGwang Li ◽  
CholHo Kim

Background: The focus of this study was to prepare and characterize the single-chain variable fragment antibody (scFv)-coupled immunoaffinity column for purification of subtilisin BRC. Methods: The scFv against subtilisin BRC was immobilized onto CNBr-activated Sepharose 4B. Adsorption isotherm for subtilisin BRC on scFv-BRC-coupled Sepharose 4B was obtained and calculated the maximum binding capacity. The extraction conditions, including eluting solution, the concentration of eluting solution and flow rate, were optimized. Under the optimized eluting conditions, the dynamic binding capacity of the immunoaffinity column was determined. Results: The scFv-BRC-coupled Sepharose 4B for immunoaffinity purification of subtilisin BRC was prepared. The coupling efficiency was about 78.4%, e.g. about 8 mg of scFv-BRC was covalently coupled to 1 g CNBr-activated Sepharose 4B. The maximum equilibrium binding capacity (qm) and dissociation constant (Kd) of the immunoaffinity column for subtilisin BRC were 3.01 mg/mL and 0.465 mg/mL, respectively. The immunoaffinity chromatography conditions were optimized and the subtilisin BRC was purified 3.29-fold with 55.6%. Conclusion: The subtilisin BRC was effectively purified with high purity using scFv-BRC-coupled Sepharose 4B and the dynamic binding capacity of the column was determined. These results suggested that scFv-BRC can be used as a ligand for affinity purification of subtilisin BRC.


Crustaceana ◽  
2020 ◽  
Vol 93 (9-10) ◽  
pp. 1023-1030
Author(s):  
Jadwiga Gronczewska ◽  
Edward F. Skorkowski

Abstract Two forms of NADP-dependent malic enzyme (ME, EC 1.1.1.40) were purified from the abdomen muscle of the crayfish Orconectes limosus (Rafinesque, 1817) and the shrimp Crangon crangon L., 1758 by affinity chromatography on 2′,5′-ADP-Sepharose 4B, with good qualitative recovery in a single step, using a substrate activation method with a malate–manganese chloride pair. The enzymes were identified by native polyacrylamide gel electrophoresis stained for protein and enzyme activity. The faster migrating mitochondrial enzyme from crayfish is inhibited by sulfhydryl reagent and loses its activity. Ellman’s Reagent, 5,5′-Dithiobis-(2-nitrobenzoic acid) (DTNB), can be used for the differentiation and measurement of cytoplasmic and mitochondrial malic enzyme in decapod crustacean tissue.


2020 ◽  
Vol 45 (4) ◽  
pp. 373-380
Author(s):  
Naciye Kayhan ◽  
Veysel Çomaklı ◽  
Sevki Adem ◽  
Caglar Güler

AbstractObjectivesEarthworms have a large impact on the soil ecosystem. They are quite sensitive to pollutants. Purification and biochemical characterization of glucose-6-phosphate dehydrogenases (G6PD) from the earthworm species Eisenia fetida were aimed. The determination of the toxicity potentials of some soil pollutants on G6PD activity was intended.MethodsG6PD was isolated using 2′,5′-ADP-Sepharose 4B affinity column. Enzyme purity and molecular mass were determined by SDS-PAGE. Its biochemical properties investigated. The effects of some soil pollutants on the enzyme were studied in vitro.ResultsEnzyme was purified with 28% yields and 232 fold. Optimum pH and buffer concentration, optimal and stable temperature was determined as pH: 8.5, 60 mM, 25 °C and 20 °C. Its molecular weight estimated as 36 kDa. The Ni2+, Hg2+, Pb2+, Cr2+, and Fe2+ ions with IC50 values in the range of 56 ± 06−120 ± 20 μM and the diniconazole, metalaxyl, methomyl, carboxyl, and oxamyl with IC50 values in the range of 7.6 ± 1.2−77 ± 12 μM exhibited an inhibitory effect on G6PD.ConclusionsG6PD was isolated and characterized from E. fetida. Its catalytic activity decreased with very low concentration by pesticides and metal ions. The results indicated that the inhibition of G6PD may be important in the toxicity mechanism of pollutants on this earthworm.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 182 ◽  
Author(s):  
Marcelo Victorio-De Los Santos ◽  
Norberto Vibanco-Pérez ◽  
Sonia Soto-Rodriguez ◽  
Ali Pereyra ◽  
Edgar Zenteno ◽  
...  

Vibrio parahaemolyticus (Vp) is the etiological agent of the acute hepatopancreatic necrosis disease (AHPND) in Penaeus vannamei shrimp. Vp possesses a 63–70 kb conjugative plasmid that encodes the binary toxin PirAvp/PirBvp. The 250 kDa PirABvp complex was purified by affinity chromatography with galactose-sepharose 4B and on a stroma from glutaraldehyde-fixed rat erythrocytes column, as a heterotetramer of PirAvp and PirBvp subunits. In addition, recombinant pirB (rPirBvp) and pirA (rPirAvp) were obtained. The homogeneity of the purified protein was determined by SDS-PAGE analysis, and the yield of protein was 488 ng/100 μg of total protein of extracellular products. The PirABvp complex and the rPirBvp showed hemagglutinating activity toward rat erythrocytes. The rPirAvp showed no hemagglutinating capacity toward the animal red cells tested. Among different mono and disaccharides tested, only GalNH2 and GlcNH2 were able to inhibit hemagglutination of the PirABvp complex and the rPirBvp. Glycoproteins showed inhibitory specificity, and fetuin was the glycoprotein that showed the highest inhibition. Other glycoproteins, such as mucin, and glycosaminoglycans, such as heparin, also inhibited the activity. Desialylation of erythrocytes enhanced the hemagglutinating activity. This confirms that Gal or Gal (β1,4) GlcNAc are the main ligands for PirABvp. The agglutinating activity of the PirABvp complex and the rPirBvp is not dependent on cations, because addition of Mg2+ or Ca2+ showed no effect on the protein capacity. Our results strongly suggest that the PirBvp subunit is a lectin, which is part of the PirA/PirBvp complex, and it seems to participate in bacterial pathogenicity.


2020 ◽  
Vol 27 (3) ◽  
pp. 187-192 ◽  
Author(s):  
Songül Bayrak ◽  
Cansu Öztürk ◽  
Yeliz Demir ◽  
Zuhal Alım ◽  
Ömer İrfan Küfrevioglu

Background: Polyphenol Oxidase (PPO) belongs to the oxidoreductase enzyme family. Methods: Here, PPO was purified from potato using Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity chromatography. It determined the interactions between some phenolic acids and the enzyme. Results: The enzyme was obtained with a specific activity of 15333.33 EU/mg protein and 7.87- fold purification. It was found that phenolic acids exhibited inhibitory properties for PPO. The IC50 values of the phenolic acids were found in the range of 0.36-2.12 mM, and their Ki values were found in the range of 0.28± 0.07-1.72±0.32 mM. It was determined that all studied compounds displayed a competitive inhibition effect. Among these compounds, 3-hydroxybenzoic acid was found to be the most effective PPO inhibitor (Ki: 0.28±0.07 mM). Conclusion: Investigating the inhibition kinetics of the enzyme will simplify the testing of PPO inhibitor candidates.


2019 ◽  
Vol 20 (10) ◽  
pp. 2434 ◽  
Author(s):  
Evgeniya E. Burkova ◽  
Alina E. Grigor’eva ◽  
Dmitrii V. Bulgakov ◽  
Pavel S. Dmitrenok ◽  
Valentin V. Vlassov ◽  
...  

Exosomes are nanovesicles (30–100 nm) containing various RNAs and different proteins. Exosomes are important in intracellular communication, immune function, etc. Exosomes from different sources including placenta were mainly obtained by different types of centrifugation and ultracentrifugations and were reported to contain from a few dozen to thousands of different proteins. First crude exosome preparations from four placentas (normal pregnancy) were obtained here using several standard centrifugations but then were additionally purified by gel filtration on Sepharose 4B. Individual preparations demonstrated different gel filtration profiles showing good or bad separation of exosome peaks from two peaks of impurity proteins and their complexes. According to electron microscopy, exosomes before gel filtration contain vesicles of different size, ring-shaped structures forming by ferritin and clusters of aggregated proteins and their complexes. After filtration through 220 nm filters and gel filtration exosomes display typically for exosome morphology and size (30–100 nm) and do not contain visible protein admixtures. Identification of exosome proteins was carried out by MS and MS/MS MALDI mass spectrometry of proteins’ tryptic hydrolyzates after their SDS-PAGE and 2D electrophoresis. We have obtained unexpected results. Good, purified exosomes contained only 11–13 different proteins: CD9, CD81, CD-63, hemoglobin subunits, interleukin-1 receptor, annexin A1, annexin A2, annexin A5, cytoplasmic actin, alkaline phosphatase, serotransferin, and probably human serum albumin and immunoglobulins. We assume that a possible number of exosome proteins found previously using crude preparations may be very much overestimated. Our data may be important for study of biological functions of pure exosomes.


Sign in / Sign up

Export Citation Format

Share Document