scholarly journals The Non-canonical Protein Binding Site at the Monomer-Monomer Interface of Yeast Proliferating Cell Nuclear Antigen (PCNA) Regulates the Rev1-PCNA Interaction and Polζ/Rev1-dependent Translesion DNA Synthesis

2011 ◽  
Vol 286 (38) ◽  
pp. 33557-33566 ◽  
Author(s):  
Neeru M. Sharma ◽  
Olga V. Kochenova ◽  
Polina V. Shcherbakova
Biochemistry ◽  
2008 ◽  
Vol 47 (50) ◽  
pp. 13354-13361 ◽  
Author(s):  
Bret D. Freudenthal ◽  
S. Ramaswamy ◽  
Manju M. Hingorani ◽  
M. Todd Washington

1993 ◽  
Vol 105 (1) ◽  
pp. 69-80 ◽  
Author(s):  
M. Baptist ◽  
J.E. Dumont ◽  
P.P. Roger

In this study, experimental conditions are described that allowed us to follow the fate of the DNA polymerase delta-associated proliferating cell nuclear antigen (PCNA), by immunolabeling during the overall cell cycle. Differences in subcellular localization or the presence of PCNA allowed us to identify each phase of the cell cycle. Using these cell cycle markers in dog thyroid epithelial cells in primary culture, we found unexpected differences in cell cycle kinetics, in response to stimulations through cAMP-dependent and cAMP-independent pathways. These provide a new dimension to the view that the two pathways are largely separate, but co-operate on DNA synthesis initiation. More precisely, thyrotropin (TSH), acting via cAMP, exerts a potent triggering effect on DNA synthesis, associated with a precocious induction of PCNA appearance. This constitutes the major influence of TSH (cAMP) in determining cell cycle progression, which is only partly moderated by TSH-dependent lengthening of S- and G2-phases.


1997 ◽  
Vol 325 (2) ◽  
pp. 435-440 ◽  
Author(s):  
Antonio GOMEZ-MUÑOZ ◽  
Laura M. FRAGO ◽  
Luis ALVAREZ ◽  
Isabel VARELA-NIETO

We found that natural (long-chain) ceramide 1-phosphate can be dispersed into aqueous solution when dissolved in an appropriate mixture of methanol/dodecane (49:1, v/v). This solvent mixture facilitates the interaction of this phosphosphingolipid with cells. Under these conditions, incubation of EGFR T17 fibroblasts with natural ceramide 1-phosphate caused a potent stimulation of DNA synthesis. This effect was accompanied by an increase in the levels of proliferating-cell nuclear antigen. Concentrations of natural ceramide 1-phosphate that stimulated the synthesis of DNA did not inhibit adenylate cyclase activity, nor did they stimulate phospholipase D. Natural ceramide 1-phosphate did not alter the cellular phosphorylation state of tyrosine residues or of mitogen-activated protein kinase. Furthermore, natural ceramide 1-phosphate failed to induce the expression of the proto-oncogenes c-myc and c-fos. Both the stimulation of DNA synthesis and the induction of proliferating-cell nuclear antigen by natural ceramide 1-phosphate were inhibited by natural ceramides. This work suggests that the use of methanol and dodecane to deliver natural ceramide 1-phosphate to cells may be useful for elucidation of the biological function(s) and mechanism(s) of action of ceramide 1-phosphate.


2005 ◽  
Vol 25 (3) ◽  
pp. 1183-1190 ◽  
Author(s):  
Lajos Haracska ◽  
Narottam Acharya ◽  
Ildiko Unk ◽  
Robert E. Johnson ◽  
Jerard Hurwitz ◽  
...  

ABSTRACT DNA polymerases (Pols) of the Y family rescue stalled replication forks by promoting replication through DNA lesions. Humans have four Y family Pols, η, ι, κ, and Rev1, of which Pols η, ι, and κ have been shown to physically interact with proliferating cell nuclear antigen (PCNA) and be functionally stimulated by it. However, in sharp contrast to the large increase in processivity that PCNA binding imparts to the replicative Pol, Polδ, the processivity of Y family Pols is not enhanced upon PCNA binding. Instead, PCNA binding improves the efficiency of nucleotide incorporation via a reduction in the apparent Km for the nucleotide. Here we show that Polι interacts with PCNA via only one of its conserved PCNA binding motifs, regardless of whether PCNA is bound to DNA or not. The mode of PCNA binding by Polι is quite unlike that in Polδ, where multisite interactions with PCNA provide for a very tight binding of the replicating Pol with PCNA. We discuss the implications of these observations for the accuracy of DNA synthesis during translesion synthesis and for the process of Pol exchange at the lesion site.


1999 ◽  
Vol 285 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Giovanni Maga ◽  
Zophonı́as O Jónsson ◽  
Manuel Stucki ◽  
Silvio Spadari ◽  
Ulrich Hübscher

Sign in / Sign up

Export Citation Format

Share Document