y family
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 49)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Dan Chen ◽  
Judit Z. Gervai ◽  
Ádám Póti ◽  
Eszter Németh ◽  
Zoltán Szeltner ◽  
...  

AbstractDefects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch–mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency–specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Feng ◽  
Baochang Zhang ◽  
Ruyi Xu ◽  
Zhe Gao ◽  
Xiaotong Liu ◽  
...  

Abasic sites are among the most abundant DNA lesions encountered by cells. Their replication requires actions of specialized DNA polymerases. Herein, two archaeal specialized DNA polymerases were examined for their capability to perform translesion DNA synthesis (TLS) on the lesion, including Sulfolobuss islandicus Dpo2 of B-family, and Dpo4 of Y-family. We found neither Dpo2 nor Dpo4 is efficient to complete abasic sites bypass alone, but their sequential actions promote lesion bypass. Enzyme kinetics studies further revealed that the Dpo4’s activity is significantly inhibited at +1 to +3 site past the lesion, at which Dpo2 efficiently extends the primer termini. Furthermore, their activities are inhibited upon synthesis of 5–6 nt TLS patches. Once handed over to Dpo1, these substrates basically inactivate its exonuclease, enabling the transition from proofreading to polymerization of the replicase. Collectively, by functioning as an “extender” to catalyze further DNA synthesis past the lesion, Dpo2 bridges the activity gap between Dpo4 and Dpo1 in the archaeal TLS process, thus achieving more efficient lesion bypass.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alexandra Vaisman ◽  
John P. McDonald ◽  
Mallory R. Smith ◽  
Sender L. Aspelund ◽  
Thomas C. Evans ◽  
...  

Y-family DNA polymerases (pols) consist of six phylogenetically separate subfamilies; two UmuC (polV) branches, DinB (pol IV, Dpo4, polκ), Rad30A/POLH (polη), and Rad30B/POLI (polι) and Rev1. Of these subfamilies, DinB orthologs are found in all three domains of life; eubacteria, archaea, and eukarya. UmuC orthologs are identified only in bacteria, whilst Rev1 and Rad30A/B orthologs are only detected in eukaryotes. Within eukaryotes, a wide array of evolutionary diversity exists. Humans possess all four Y-family pols (pols η, ι, κ, and Rev1), Schizosaccharomyces pombe has three Y-family pols (pols η, κ, and Rev1), and Saccharomyces cerevisiae only has polη and Rev1. Here, we report the cloning, expression, and biochemical characterization of the four Y-family pols from the lower eukaryotic thermophilic fungi, Thermomyces lanuginosus. Apart from the expected increased thermostability of the T. lanuginosus Y-family pols, their major biochemical properties are very similar to properties of their human counterparts. In particular, both Rad30B homologs (T. lanuginosus and human polɩ) exhibit remarkably low fidelity during DNA synthesis that is template sequence dependent. It was previously hypothesized that higher organisms had acquired this property during eukaryotic evolution, but these observations imply that polι originated earlier than previously known, suggesting a critical cellular function in both lower and higher eukaryotes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Claudia Lancey ◽  
Muhammad Tehseen ◽  
Souvika Bakshi ◽  
Matthew Percival ◽  
Masateru Takahashi ◽  
...  

AbstractY-family DNA polymerase κ (Pol κ) can replicate damaged DNA templates to rescue stalled replication forks. Access of Pol κ to DNA damage sites is facilitated by its interaction with the processivity clamp PCNA and is regulated by PCNA mono-ubiquitylation. Here, we present cryo-EM reconstructions of human Pol κ bound to DNA, an incoming nucleotide, and wild type or mono-ubiquitylated PCNA (Ub-PCNA). In both reconstructions, the internal PIP-box adjacent to the Pol κ Polymerase-Associated Domain (PAD) docks the catalytic core to one PCNA protomer in an angled orientation, bending the DNA exiting the Pol κ active site through PCNA, while Pol κ C-terminal domain containing two Ubiquitin Binding Zinc Fingers (UBZs) is invisible, in agreement with disorder predictions. The ubiquitin moieties are partly flexible and extend radially away from PCNA, with the ubiquitin at the Pol κ-bound protomer appearing more rigid. Activity assays suggest that, when the internal PIP-box interaction is lost, Pol κ is retained on DNA by a secondary interaction between the UBZs and the ubiquitins flexibly conjugated to PCNA. Our data provide a structural basis for the recruitment of a Y-family TLS polymerase to sites of DNA damage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shigui Li ◽  
Ning Zhang ◽  
Xi Zhu ◽  
Rui Ma ◽  
Shengyan Liu ◽  
...  

The nuclear factor Y (NF-Y) family is comprised of transcription factors that have been implicated in multiple plant biological processes. However, little is known about this family in potato. In the present study, a total of 41 StNF-Y genes were identified in the potato genome. In addition, the phylogenetic, gene structure, motif, and chromosomal location of this family were analyzed. The tissue expression profiles based on RNA-seq data showed that 27 StNF-Y genes had tissue-specific expression, while the remaining 14 had low expression in all tissues. Publicly available transcriptomics data from various abiotic stresses revealed several stress-responsive StNF-Y genes, which were further verified via quantitative real-time polymerase chain reaction experiments. Furthermore, the StNF-YC9 gene was highly induced by dehydration and drought treatments. StNF-YC9 protein was mainly localized in the nucleus and cytoplasmic membrane. Overexpressing StNF-YC9 potato lines (OxStNF-YC9) had significantly increased in root length and exhibited stronger stomatal closure in potato treated by polyethylene-glycol and abscisic acid. In addition, OxStNF-YC9 lines had higher photosynthetic rates and decreased water loss under short-term drought stress compared to wild-type plants. During long-term drought stress, OxStNF-YC9 lines had higher proline levels, lower malondialdehyde content, and increased activity of several antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase. This study increased our understanding of the StNF-Y gene and suggested that StNF-YC9 played an important role in drought tolerance by increased the photosynthesis rate, antioxidant enzyme activity, and proline accumulation coupled to lowered malondialdehyde accumulation in potato.


2021 ◽  
Vol 22 (19) ◽  
pp. 10354
Author(s):  
Xinrui Zheng ◽  
Hao Zhang ◽  
Limei Zhang ◽  
Fangsen Xu ◽  
Lei Shi ◽  
...  

Nuclear Factor-Y (NF-Y) transcription factors play vital roles in plant abiotic stress response. Here, the NF-Y family in Brassica napus, which is hyper-sensitive to nitrogen (N) deprivation, was comprehensively identified and systematically characterized. A total of 108 NF-Y family members were identified in B. napus and categorized into three subfamilies (38 NF-YA, 46 NF-YB and 24 NF-YC; part of the Arabidopsis NF-YC homologous genes had been lost during B. napus evolution). In addition, the expansion of the NF-Y family in B. napus was driven by whole-genome duplication and segmental duplication. Differed expression patterns of BnaNF-Ys were observed in response to multiple nutrient starvations. Thirty-four genes were regulated only in one nutrient deficient condition. Moreover, more BnaNF-YA genes were differentially expressed under nutrient limited environments compared to the BnaNF-YB and BnaNF-YC subfamilies. Sixteen hub genes responded diversely to N deprivation in five rapeseed tissues. In summary, our results laid a theoretical foundation for the follow-up functional study of the key NF-Y genes in B. napus in regulating nutrient homeostasis, especially N.


2021 ◽  
Vol 23 (09) ◽  
pp. 556-572
Author(s):  
Mahmoud Riad Mahmoud ◽  
◽  
Moshera A.M. Ahmad ◽  
AzzaE. Ismail ◽  
◽  
...  

Recently, several methods have been introduced to generate neoteric distributions with more exibility, like T-X, T-R [Y] and alpha power. The T-Inverse exponential [Y] neoteric family of distributons is proposed in this paper utilising the T-R [Y] method. A generalised inverse exponential (IE) distribution family has been established. The distribution family is generated using quantile functions of some dierent distributions. A number of general features in the T-IE [Y] family are examined, like mean deviation, mode, moments, quantile function, and entropies. A special model of the T-IE [Y] distribution family was one of those old distributions. Certain distribution examples are produced by the T-IE [Y] family. An applied case was presented which showed the importance of the neoteric family.


Sign in / Sign up

Export Citation Format

Share Document