scholarly journals Plant Actin-binding Protein SCAB1 Is Dimeric Actin Cross-linker with Atypical Pleckstrin Homology Domain

2012 ◽  
Vol 287 (15) ◽  
pp. 11981-11990 ◽  
Author(s):  
Wei Zhang ◽  
Yang Zhao ◽  
Yan Guo ◽  
Keqiong Ye

SCAB1 is a novel plant-specific actin-binding protein that binds, bundles, and stabilizes actin filaments and regulates stomatal movement. Here, we dissected the structure and function of SCAB1 by structural and biochemical approaches. We show that SCAB1 is composed of an actin-binding domain, two coiled-coil (CC) domains, and a fused immunoglobulin and pleckstrin homology (Ig-PH) domain. We determined crystal structures for the CC1 and Ig-PH domains at 1.9 and 1.7 Å resolution, respectively. The CC1 domain adopts an antiparallel helical hairpin that further dimerizes into a four-helix bundle. The CC2 domain also mediates dimerization. At least one of the coiled coils is required for actin binding, indicating that SCAB1 is a bivalent actin cross-linker. The key residues required for actin binding were identified. The PH domain lacks a canonical basic phosphoinositide-binding pocket but can bind weakly to inositol phosphates via a basic surface patch, implying the involvement of inositol signaling in SCAB1 regulation. Our results provide novel insights into the functional organization of SCAB1.

1999 ◽  
Vol 82 (08) ◽  
pp. 399-406 ◽  
Author(s):  
Alice Ma ◽  
Charles Abrams

IntroductionA remarkable event that takes place during platelet activation is the reorganization that occurs when platelets adhere and spread on exposed collagen fibrils or become activated in the circulation by agonists, such as thrombin or adenosine diphosphate (ADP). In response to either stimulus, the shape of the platelet changes from a smooth disc to an irregular form with multiple, finger-like projections. This transformation is due to cytoskeletal rearrangements within the platelet. The platelet cytoskeleton is an intricately woven network1 arranged in three major structures: a cytoplasmic actin network, a rim of membrane-associated cytoskeleton, and a marginal band consisting of a microtubule coil. Together, these lend support to the platelet plasma membrane and give shape to both resting and activated platelets.At several levels, phosphoinositides are involved in the regulation of the platelet cytoskeleton. Actin binding, capping, and severing proteins are regulated by binding to phosphatidylinositol 4,5-bisphosphate (PIP2). The action of specific phosphoinositide kinases and phosphatases, leading to the regulation of levels of D3- and D4-containing phosphoinositides, has a profound impact on actin assembly. For example, synthesis of D3-containing phosphoinositides by phosphoinositide 3-kinases (PI3Ks) can lead to cortical actin assembly and the formation of lamellipodia downstream of stimulation by growth factor receptors, insulin receptors, and G protein-coupled receptors.2-5 There is increasing evidence that other lipid kinases also regulate cytoskeletal reorganization. Phosphatidylinositol 4-P 5-kinase enzymes, acting downstream of Rho family GTPases, have been shown to stimulate actin assembly.6 Because these areas have been covered in other articles,7,8 this review will, instead, concentrate on the role of pleckstrin and pleckstrin homology (PH) domains in the regulation of the actin cytoskeleton.Pleckstrin homology (PH) domains are the most wellrecognized phosphoinositide-binding protein motifs, comprising “modules” within more than 100 signaling proteins, and are used to mediate intermolecular interactions. The threedimensional structures of all PH domains studied to date are virtually superimposable, despite divergence in their amino acid sequence.9-17 The basic PH domain structure is composed of a β “sandwich,” capped at one end by a carboxyl-terminal α-helix, and all PH domains exhibit a striking polarity in their distribution of surface charge (Fig. 1). Based on the similarity of the structure of the NH2-terminal PH domain of pleckstrin to that of the retinol-binding protein, which was known to bind lipids, Harlan and coworkers tested PH domains and demonstrated that they bind to phosphoinositides.18 Since then, a number of laboratories, including our own, have published reports showing that the binding of PH domains to phosphoinositides can regulate protein function.4,19-22 It is now accepted that PH domains serve to localize their molecules into membrane structures by binding to phosphoinositides;18,23 though some PH domains may interact with other targets, such as the βγ subunits of heterotrimeric G proteins (Gβγ)24-27 or protein kinase C (PKC).28-30 The structure of several PH domains complexed to inositol trisphosphate (IP3) has been solved,11,13 confirming a physical interaction between the inositol phosphate headgroup and the positively charged face of the PH domain. For example, the association of the PH domain of PLCδ with IP3 is shown in Figure 1. Pleckstrin is a 43-kDa hematopoietic protein that contains the amino- and carboxyl- termini of the two prototypic PH domains (Fig. 2). Pleckstrin was first described as a major substrate for PKC in platelets and leukocytes, and its phosphorylation has long been used as a marker for platelet activation. Though its function in vivo remains unclear, expressed pleckstrin can affect PIP2-based signaling mediated by phospholipase C, PI3K, and inositol phosphatases.31-33 Ser113, Thr114, and Ser117, the three residues phosphorylated by PKC, lie adjacent to, but not within, the amino-terminal PH domain. Phosphorylation at these sites has been shown to regulate the function of this PH domain.34 Recently, a third functional motif has been described within pleckstrin.35 This motif is termed the DEP domain after the first three proteins known to possess this sequence (disheveled, Egl-10, and pleckstrin).


1999 ◽  
Vol 342 (2) ◽  
pp. 423-430
Author(s):  
Limin LIU ◽  
Mary MAKOWSKE

It has been proposed that phosphoinositides and inositol phosphates serve as general ligands for members of the structurally related pleckstrin homology (PH) domain family. The N-terminal PH domain of pleckstrin (N-PH), in contrast with other PH domains, does not bind to any of these ligands with the high affinity expected for a physiological interaction. To examine whether N-PH might instead mediate protein-protein interaction, a fusion protein with glutathione S-transferase (GST) expressing N-PH (GST-N-PH) was used to screen [35S]methionine metabolically labelled HL-60 and Bac1.2F5 cell lysates for potential binding partners. A 30 kDa binding protein was identified in both cell lines. Binding to N-PH demonstrated specificity, because binding was approx. 10-fold higher than when an equimolar amount of pleckstrin C-terminal PH domain (GST-C-PH) was used as probe. The 30 kDa protein could also be metabolically labelled with [32P]Pi and proved to be a tyrosine-phosphorylated protein. Binding to N-PH could be specifically inhibited with phosphotyrosine but not with phosphothreonine; the inhibition was concentration-dependent. Site-directed mutagenesis indicated that a positively charged region previously identified as the phosphoinositide-binding site in N-PH and other PH domains, rather than a putative phosphotyrosine-binding region previously identified in structurally similar phosphotyrosine-binding (PTB) domains, served as the binding site. These results suggest that the positively charged region of N-PH has the potential to interact with a protein ligand that contains phosphotyrosine.


2000 ◽  
Vol 150 (3) ◽  
pp. 539-552 ◽  
Author(s):  
Karen Oegema ◽  
Matthew S. Savoian ◽  
Timothy J. Mitchison ◽  
Christine M. Field

We have characterized a human homologue of anillin, a Drosophila actin binding protein. Like Drosophila anillin, the human protein localizes to the nucleus during interphase, the cortex following nuclear envelope breakdown, and the cleavage furrow during cytokinesis. Anillin also localizes to ectopic cleavage furrows generated between two spindles in fused PtK1 cells. Microinjection of antianillin antibodies slows cleavage, leading to furrow regression and the generation of multinucleate cells. GFP fusions that contain the COOH-terminal 197 amino acids of anillin, which includes a pleckstrin homology (PH) domain, form ectopic cortical foci during interphase. The septin Hcdc10 localizes to these ectopic foci, whereas myosin II and actin do not, suggesting that anillin interacts with the septins at the cortex. Robust cleavage furrow localization requires both this COOH-terminal domain and additional NH2-terminal sequences corresponding to an actin binding domain defined by in vitro cosedimentation assays. Endogenous anillin and Hcdc10 colocalize to punctate foci associated with actin cables throughout mitosis and the accumulation of both proteins at the cell equator requires filamentous actin. These results indicate that anillin is a conserved cleavage furrow component important for cytokinesis. Interactions with at least two other furrow proteins, actin and the septins, likely contribute to anillin function.


Traffic ◽  
2001 ◽  
Vol 2 (11) ◽  
pp. 851-858 ◽  
Author(s):  
Elizabeth M. Bennett ◽  
Chih-Ying Chen ◽  
Asa E. Y. Engqvist-Goldstein ◽  
David G. Drubin ◽  
Frances M. Brodsky

1992 ◽  
Vol 67 (02) ◽  
pp. 252-257 ◽  
Author(s):  
Anne M Aakhus ◽  
J Michael Wilkinson ◽  
Nils Olav Solum

SummaryActin-binding protein (ABP) is degraded into fragments of 190 and 90 kDa by calpain. A monoclonal antibody (MAb TI10) against the 90 kDa fragment of ABP coprecipitated with the glycoprotein lb (GP lb) peak observed on crossed immunoelectrophoresis of Triton X-100 extracts of platelets prepared without calpain inhibitors. MAb PM6/317 against the 190 kDa fragment was not coprecipitated with the GP lb peak under such conditions. The 90 kDa fragment was adsorbed on protein A agarose from extracts that had been preincubated with antibodies to GP lb. This supports the idea that the GP Ib-ABP interaction resides in the 90 kDa region of ABP. GP lb was sedimented with the Triton-insoluble actin filaments in trace amounts only, and only after high speed centrifugation (100,000 × g, 3 h). Both the 190 kDa and the 90 kDa fragments of ABP were sedimented with the Triton-insoluble actin filaments.


Sign in / Sign up

Export Citation Format

Share Document