scholarly journals ArabidopsisFerritin 1 (AtFer1) Gene Regulation by the Phosphate Starvation Response 1 (AtPHR1) Transcription Factor Reveals a Direct Molecular Link between Iron and Phosphate Homeostasis

2013 ◽  
Vol 288 (31) ◽  
pp. 22670-22680 ◽  
Author(s):  
Marc Bournier ◽  
Nicolas Tissot ◽  
Stéphane Mari ◽  
Jossia Boucherez ◽  
Eric Lacombe ◽  
...  
2018 ◽  
Vol 219 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Yongjia Zhong ◽  
Yuguang Wang ◽  
Jiangfan Guo ◽  
Xinlu Zhu ◽  
Jing Shi ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Beate Schwer ◽  
Ana M. Sanchez ◽  
Angad Garg ◽  
Debashree Chatterjee ◽  
Stewart Shuman

ABSTRACT Fission yeast phosphate homeostasis entails transcriptional induction of genes encoding phosphate-mobilizing proteins under conditions of phosphate starvation. Transcription factor Pho7, a member of the Zn 2 Cys 6 family of fungal transcription regulators, is the central player in the starvation response. The DNA binding sites in the promoters of phosphate-responsive genes have not been defined, nor have any structure-function relationships been established for the Pho7 protein. Here we narrow this knowledge gap by (i) delineating an autonomous DNA-binding domain (DBD) within Pho7 that includes the Zn 2 Cys 6 module, (ii) deploying recombinant Pho7 DBD in DNase I footprinting and electrophoretic mobility shift assays (EMSAs) to map the Pho7 recognition sites in the promoters of the phosphate-regulated pho1 and tgp1 genes to a 12-nucleotide sequence motif [5′-TCG(G/C)(A/T)xxTTxAA], (iii) independently identifying the same motif as a Pho7 recognition element via in silico analysis of available genome-wide ChIP-seq data, (iv) affirming that mutations in the two Pho7 recognition sites in the pho1 promoter efface pho1 expression in vivo , and (v) establishing that the zinc-binding cysteines and a pair of conserved arginines in the DBD are essential for Pho7 activity in vivo . IMPORTANCE Fungi respond to phosphate starvation by inducing the transcription of a set of phosphate acquisition genes that comprise a phosphate regulon. Pho7, a member of the Zn 2 Cys 6 family of fungal transcription regulators, is the central player in the phosphate starvation response in fission yeast. The present study identifies a 12-nucleotide Pho7 DNA binding motif [5′-TCG(G/C)(A/T)xxTTxAA] in the promoters of phosphate-regulated genes, pinpoints DNA and protein features important for Pho7 binding to DNA, and correlates them with Pho7-dependent gene expression in vivo . The results highlight distinctive properties of Pho7 vis-a-vis other fungal zinc binuclear cluster transcription factors as well as the divergent cast of transcription factors deployed for phosphate homeostasis in fission yeast versus budding yeast.


2012 ◽  
Vol 36 (3) ◽  
pp. 607-620 ◽  
Author(s):  
CHENJIA SHEN ◽  
SUIKANG WANG ◽  
SAINA ZHANG ◽  
YANXIA XU ◽  
QIAN QIAN ◽  
...  

2018 ◽  
Vol 20 (5) ◽  
pp. 1782-1793 ◽  
Author(s):  
Qian Wang ◽  
Yoon-Suk Kang ◽  
Abdullah Alowaifeer ◽  
Kaixiang Shi ◽  
Xia Fan ◽  
...  

PROTEOMICS ◽  
2006 ◽  
Vol 6 (5) ◽  
pp. 1495-1511 ◽  
Author(s):  
Wanda Maria Almeida von Krüger ◽  
Leticia Miranda Santos Lery ◽  
Marcia Regina Soares ◽  
Fernanda Saloum de Neves-Manta ◽  
Celia Maria Batista e Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document