phosphate starvation response
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 35)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Padubidri V Shivaprasad ◽  
Ashwin Nair ◽  
C.Y. Harshith ◽  
Anushree N

Chloroplast is the site for transforming light energy to chemical energy. It also acts as a production unit for a variety of defense-related molecules. These defense moieties are necessary to mount a successful counter defence against pathogens including viruses. Geminiviruses disrupt chloroplast homeostasis as a basic strategy for their successful infection inducing vein-clearing, mosaics and chlorosis in infected plants. Here we show that a geminiviral pathogenicity determinant protein βC1 directly interferes with plastid homeostasis. βC1 was capable of inducing organelle-specific nuclease to degrade plastid genome as well as diverted functions of RecA1 protein, a major player in plastid genome maintenance. βC1 interacted with RecA1 in plants and its homolog in bacteria to reduce the ability of host cells to maintain genomic integrity under stresses. Further, reduction in the coding capacity of plastids severely affected retrograde signalling necessary for viral perception and activation of defense. Induction of chloroplast-specific nuclease by βC1 is similar to phosphate starvation-response in which nucleotides are recycled to augment synthesis of new, potentially viral, DNA. These results indicate the presence of a novel strategy in which a viral protein alters host defence by targeting regulators of chloroplast DNA. We predict that the mechanism identified here might have similarities in other plant-pathogen interactions.


2021 ◽  
Author(s):  
Debatosh Das ◽  
Michael Paries ◽  
Karen Hobecker ◽  
Michael Gigl ◽  
Corinna Dawid ◽  
...  

Arbuscular mycorrhiza (AM) is a widespread symbiosis between roots of the majority of land plants and Glomeromycotina fungi. AM is important for ecosystem health and functioning as the fungi critically support plant performance by providing essential mineral nutrients, particularly the poorly accessible phosphate, in exchange for organic carbon. AM fungi colonize the inside of roots and this is promoted at low but inhibited at high plant phosphate status, while the mechanistic basis for this phosphate-dependence remained obscure. Here we demonstrate that a major transcriptional regulator of phosphate starvation responses in rice PHOSPHATE STARVATION RESPONSE 2 (PHR2) regulates AM. Root colonization of phr2 mutants is drastically reduced, and PHR2 is required for root colonization, mycorrhizal phosphate uptake, and yield increase in field soil. PHR2 promotes AM by targeting genes required for pre-contact signaling, root colonization, and AM function. Thus, this important symbiosis is directly wired to the PHR2-controlled plant phosphate starvation response.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2133
Author(s):  
Weifang Wu ◽  
Haoshun Zhao ◽  
Qin Deng ◽  
Haiyang Yang ◽  
Xiaoxiao Guan ◽  
...  

Watermelon (Citrullus lanatus) is a globally important Cucurbitaceae crop in which grafting is commonly used to improve stress tolerance and enhance nutrient utilization. However, the mechanism underlying grafting-enhanced nutrient assimilation remains unclear. Here, we demonstrate the possible involvement of a novel Cucurbitaceae miRNA, ClmiR86, in grafting-enhanced phosphate-starvation tolerance via CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE 5 (ClCIPK5) suppression in watermelon. Transcript analyses revealed that the induction of ClmiR86 expression was correlated with the downregulation of ClCIPK5 in squash-grafted watermelon under phosphate starvation. In addition, the differential expression of ClmiR86 in various watermelon genotypes was consistent with their phosphate utilization efficiency. Furthermore, ClmiR86 overexpression in Arabidopsis enhanced root growth and phosphate uptake under phosphate starvation and promoted inflorescence elongation under normal conditions. These results suggest that the ClmiR86–ClCIPK5 axis is involved in phosphate starvation response as well as grafting-enhanced growth vigor and phosphate assimilation. The present study provides valuable insights for investigating long-distance signaling and nutrient utilization in plants.


Cell ◽  
2021 ◽  
Author(s):  
Jincai Shi ◽  
Boyu Zhao ◽  
Shuang Zheng ◽  
Xiaowei Zhang ◽  
Xiaolin Wang ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 601
Author(s):  
Eric S. Land ◽  
Caitlin A. Cridland ◽  
Branch Craige ◽  
Anna Dye ◽  
Sherry B. Hildreth ◽  
...  

Phosphate is a major plant macronutrient and low phosphate availability severely limits global crop productivity. In Arabidopsis, a key regulator of the transcriptional response to low phosphate, phosphate starvation response 1 (PHR1), is modulated by a class of signaling molecules called inositol pyrophosphates (PP-InsPs). Two closely related diphosphoinositol pentakisphosphate enzymes (AtVIP1 and AtVIP2) are responsible for the synthesis and turnover of InsP8, the most implicated molecule. This study is focused on characterizing Arabidopsis vip1/vip2 double mutants and their response to low phosphate. We present evidence that both local and systemic responses to phosphate limitation are dampened in the vip1/vip2 mutants as compared to wild-type plants. Specifically, we demonstrate that under Pi-limiting conditions, the vip1/vip2 mutants have shorter root hairs and lateral roots, less accumulation of anthocyanin and less accumulation of sulfolipids and galactolipids. However, phosphate starvation response (PSR) gene expression is unaffected. Interestingly, many of these phenotypes are opposite to those exhibited by other mutants with defects in the PP-InsP synthesis pathway. Our results provide insight on the nexus between inositol phosphates and pyrophosphates involved in complex regulatory mechanisms underpinning phosphate homeostasis in plants.


2021 ◽  
Author(s):  
Yukari Nagatoshi ◽  
Kenta Ikazaki ◽  
Nobuyuki Mizuno ◽  
Yasufumi Kobayashi ◽  
Kenichiro Fujii ◽  
...  

Drought severely damages crop production, even under conditions so mild that the leaves show no signs of wilting. As effective methods for analyzing the field drought response have not been established, it is unclear how field-grown plants respond to mild drought. We show that ridges are a useful experimental tool to mimic mild drought stress in the field. Mild drought reduces inorganic phosphate levels in the leaves to activate the phosphate starvation response (PSR) in field-grown soybean plants. PSR-related gene expression is mainly observed under drought conditions that are too mild to activate abscisic acid-mediated gene expression. Thus, our study provides insights into the molecular response to mild drought in field-grown plants and into the link between nutritional and drought stress responses in plants.


Sign in / Sign up

Export Citation Format

Share Document