scholarly journals Defining the DNA Binding Site Recognized by the Fission Yeast Zn 2 Cys 6 Transcription Factor Pho7 and Its Role in Phosphate Homeostasis

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Beate Schwer ◽  
Ana M. Sanchez ◽  
Angad Garg ◽  
Debashree Chatterjee ◽  
Stewart Shuman

ABSTRACT Fission yeast phosphate homeostasis entails transcriptional induction of genes encoding phosphate-mobilizing proteins under conditions of phosphate starvation. Transcription factor Pho7, a member of the Zn 2 Cys 6 family of fungal transcription regulators, is the central player in the starvation response. The DNA binding sites in the promoters of phosphate-responsive genes have not been defined, nor have any structure-function relationships been established for the Pho7 protein. Here we narrow this knowledge gap by (i) delineating an autonomous DNA-binding domain (DBD) within Pho7 that includes the Zn 2 Cys 6 module, (ii) deploying recombinant Pho7 DBD in DNase I footprinting and electrophoretic mobility shift assays (EMSAs) to map the Pho7 recognition sites in the promoters of the phosphate-regulated pho1 and tgp1 genes to a 12-nucleotide sequence motif [5′-TCG(G/C)(A/T)xxTTxAA], (iii) independently identifying the same motif as a Pho7 recognition element via in silico analysis of available genome-wide ChIP-seq data, (iv) affirming that mutations in the two Pho7 recognition sites in the pho1 promoter efface pho1 expression in vivo , and (v) establishing that the zinc-binding cysteines and a pair of conserved arginines in the DBD are essential for Pho7 activity in vivo . IMPORTANCE Fungi respond to phosphate starvation by inducing the transcription of a set of phosphate acquisition genes that comprise a phosphate regulon. Pho7, a member of the Zn 2 Cys 6 family of fungal transcription regulators, is the central player in the phosphate starvation response in fission yeast. The present study identifies a 12-nucleotide Pho7 DNA binding motif [5′-TCG(G/C)(A/T)xxTTxAA] in the promoters of phosphate-regulated genes, pinpoints DNA and protein features important for Pho7 binding to DNA, and correlates them with Pho7-dependent gene expression in vivo . The results highlight distinctive properties of Pho7 vis-a-vis other fungal zinc binuclear cluster transcription factors as well as the divergent cast of transcription factors deployed for phosphate homeostasis in fission yeast versus budding yeast.

2019 ◽  
Vol 39 (13) ◽  
Author(s):  
Angad Garg ◽  
Yehuda Goldgur ◽  
Ana M. Sanchez ◽  
Beate Schwer ◽  
Stewart Shuman

ABSTRACT Pho7 is the Schizosaccharomyces pombe fission yeast Zn2Cys6 transcriptional factor that drives a response to phosphate starvation in which phosphate acquisition genes are upregulated. Here we report a crystal structure at 1.6-Å resolution of the Pho7 DNA-binding domain (DBD) bound at its target site 2 in the pho1 promoter (5′-TCGGAAATTAAAAA). Comparison to the previously reported structure of Pho7 DBD in complex with its binding site in the tgp1 promoter (5′-TCGGACATTCAAAT) reveals shared determinants of target site specificity as well as variations in the protein-DNA interface that accommodate different promoter DNA sequences. Mutagenesis of Pho7 amino acids at the DNA interface identified nucleobase contacts at the periphery of the footprint that are essential for the induction of pho1 expression in response to phosphate starvation and for Pho7 binding to site 1 in the pho1 promoter.


2021 ◽  
Author(s):  
Kusal T.G. Samarasinghe ◽  
Elvira An ◽  
Miriam Genuth ◽  
Ling Chu ◽  
Scott Holley ◽  
...  

Dysregulated transcription factors (TFs) that rewire gene expression circuitry are frequently identified as key players in disease. Although several TFs have been drugged with small molecules, the majority of oncogenic TFs are not currently pharmaceutically tractable due to their paucity of ligandable pockets. The first generation of transcription factor targeting chimeras (TRAFTACs) was developed to target TFs for proteasomal degradation by exploiting their DNA binding ability. In the current study, we have developed the second generation TRAFTACs (oligoTRAFTACs) comprised of a TF-binding oligonucleotide and an E3 ligase-recruiting ligand. Herein, we demonstrate the development of oligoTRAFTACs to induce the degradation of two oncogenic TFs, c-Myc and brachyury. In addition, we show that brachyury can be successfully degraded by oligoTRAFTACs in chordoma cell lines. Furthermore, zebrafish experiments demonstrate in vivo oligoTRAFTAC activity. Overall, our data demonstrate oligoTRAFTACs as a generalizable platform towards difficult-to-drug TFs and their degradability via the proteasomal pathway.


Development ◽  
1997 ◽  
Vol 124 (22) ◽  
pp. 4425-4433 ◽  
Author(s):  
M.D. Biggin ◽  
W. McGinnis

Recent advances have shed new light on how the Q50 homeoproteins act in Drosophila. These transcription factors have remarkably similar and promiscuous DNA-binding specificities in vitro; yet they each specify distinct developmental fates in vivo. One current model suggests that, because the Q50 homeoproteins have distinct biological functions, they must each regulate different target genes. According to this ‘co-selective binding’ model, significant binding of Q50 homeoproteins to functional DNA elements in vivo would be dependent upon cooperative interactions with other transcription factors (cofactors). If the Q50 homeoproteins each interact differently with cofactors, they could be selectively targeted to unique, limited subsets of their in vitro recognition sites and thus control different genes. However, a variety of experiments question this model. Molecular and genetic experiments suggest that the Q50 homeoproteins do not regulate very distinct sets of genes. Instead, they mostly control the expression of a large number of shared targets. The distinct morphogenic properties of the various Q50 homeoproteins may principally result from the different manners in which they either activate or repress these common targets. Further, in vivo binding studies indicate that at least two Q50 homeoproteins have very broad and similar DNA-binding specificities in embryos, a result that is inconsistent with the ‘co-selective binding’ model. Based on these and other data, we suggest that Q50 homeoproteins bind many of their recognition sites without the aid of cofactors. In this ‘widespread binding’ model, cofactors act mainly by helping to distinguish the way in which homeoproteins regulate targets to which they are already bound.


2017 ◽  
Author(s):  
Bin Z. He ◽  
Xu Zhou ◽  
Erin K. O’Shea

AbstractIn S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. This reduced dependence on Pho2 evolved in C. glabrata and closely related species. Pho4 orthologs that are less dependent on Pho2 induce more genes when introduced into the S. cerevisiae background, and Pho4 in C. glabrata both binds to more sites and induces more genes with expanded functional roles compared to Pho4 in S. cerevisiae. Our work reveals an evolutionary mechanism for rapidly expanding the targets of a transcription factor by changing its dependence on a co-activator, potentially refining the physiological response it regulates.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


1986 ◽  
Vol 6 (12) ◽  
pp. 4723-4733
Author(s):  
L A Chodosh ◽  
R W Carthew ◽  
P A Sharp

A simple approach has been developed for the unambiguous identification and purification of sequence-specific DNA-binding proteins solely on the basis of their ability to bind selectively to their target sequences. Four independent methods were used to identify the promoter-specific RNA polymerase II transcription factor MLTF as a 46-kilodalton (kDa) polypeptide. First, a 46-kDa protein was specifically cross-linked by UV irradiation to a body-labeled DNA fragment containing the MLTF binding site. Second, MLTF sedimented through glycerol gradients at a rate corresponding to a protein of native molecular weight 45,000 to 50,000. Third, a 46-kDa protein was specifically retained on a biotin-streptavidin matrix only when the DNA fragment coupled to the matrix contained the MLTF binding site. Finally, proteins from the most highly purified fraction which were eluted and renatured from the 44- to 48-kDa region of a sodium dodecyl sulfate-polyacrylamide gel exhibited both binding and transcription-stimulatory activities. The DNA-binding activity was purified 100,000-fold by chromatography through three conventional columns plus a DNA affinity column. Purified MLTF was characterized with respect to the kinetic and thermodynamic properties of DNA binding. These parameters indicate a high degree of occupancy of MLTF binding sites in vivo.


1994 ◽  
Vol 14 (8) ◽  
pp. 5309-5317
Author(s):  
S P Murphy ◽  
J J Gorzowski ◽  
K D Sarge ◽  
B Phillips

Two distinct murine heat shock transcription factors, HSF1 and HSF2, have been identified. HSF1 mediates the transcriptional activation of heat shock genes in response to environmental stress, while the function of HSF2 is not understood. Both factors can bind to heat shock elements (HSEs) but are maintained in a non-DNA-binding state under normal growth conditions. Mouse embryonal carcinoma (EC) cells are the only mammalian cells known to exhibit HSE-binding activity, as determined by gel shift assays, even when maintained at normal physiological temperatures. We demonstrate here that the constitutive HSE-binding activity present in F9 and PCC4.aza.R1 EC cells, as well as a similar activity found to be present in mouse embryonic stem cells, is composed predominantly of HSF2. HSF2 in F9 EC cells is trimerized and is present at higher levels than in a variety of nonembryonal cell lines, suggesting a correlation of these properties with constitutive HSE-binding activity. Surprisingly, transcription run-on assays suggest that HSF2 in unstressed EC cells does not stimulate transcription of two putative target genes, hsp70 and hsp86. Genomic footprinting analysis indicates that HSF2 is not bound in vivo to the HSE of the hsp70 promoter in unstressed F9 EC cells, although HSF2 is present in the nucleus and the promoter is accessible to other transcription factors and to HSF1 following heat shock. Thus trimerization and nuclear localization of HSF2 do not appear to be sufficient for in vivo binding of HSF2 to the HSE of the hsp70 promoter in unstressed F9 EC cells.


1998 ◽  
Vol 18 (10) ◽  
pp. 5670-5677 ◽  
Author(s):  
Ossama Abu Hatoum ◽  
Shlomit Gross-Mesilaty ◽  
Kristin Breitschopf ◽  
Aviad Hoffman ◽  
Hedva Gonen ◽  
...  

ABSTRACT MyoD is a tissue-specific transcriptional activator that acts as a master switch for skeletal muscle differentiation. Its activity is induced during the transition from proliferating, nondifferentiated myoblasts to resting, well-differentiated myotubes. Like many other transcriptional regulators, it is a short-lived protein; however, the targeting proteolytic pathway and the underlying regulatory mechanisms involved in the process have remained obscure. It has recently been shown that many short-lived regulatory proteins are degraded by the ubiquitin system. Degradation of a protein by the ubiquitin system proceeds via two distinct and successive steps, conjugation of multiple molecules of ubiquitin to the target protein and degradation of the tagged substrate by the 26S proteasome. Here we show that MyoD is degraded by the ubiquitin system both in vivo and in vitro. In intact cells, the degradation is inhibited by lactacystin, a specific inhibitor of the 26S proteasome. Inhibition is accompanied by accumulation of high-molecular-mass MyoD-ubiquitin conjugates. In a cell-free system, the proteolytic process requires both ATP and ubiquitin and, like the in vivo process, is preceded by formation of ubiquitin conjugates of the transcription factor. Interestingly, the process is inhibited by the specific DNA sequence to which MyoD binds: conjugation and degradation of a MyoD mutant protein which lacks the DNA-binding domain are not inhibited. The inhibitory effect of the DNA requires the formation of a complex between the DNA and the MyoD protein. Id1, which inhibits the binding of MyoD complexes to DNA, abrogates the effect of DNA on stabilization of the protein.


Sign in / Sign up

Export Citation Format

Share Document