gene regulation
Recently Published Documents


TOTAL DOCUMENTS

5989
(FIVE YEARS 1125)

H-INDEX

187
(FIVE YEARS 17)

2022 ◽  
Vol 142 ◽  
pp. 50-62
Author(s):  
Payal Damani-Yokota ◽  
Fengqiu Zhang ◽  
Alexandria Gillespie ◽  
Haeree Park ◽  
Amy Burnside ◽  
...  

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Michael Ackah ◽  
Liangliang Guo ◽  
Shaocong Li ◽  
Xin Jin ◽  
Charles Asakiya ◽  
...  

Drought stress remains one of the most detrimental environmental cues affecting plant growth and survival. In this work, the DNA methylome changes in mulberry leaves under drought stress (EG) and control (CK) and their impact on gene regulation were investigated by MethylRAD sequencing. The results show 138,464 (37.37%) and 56,241 (28.81%) methylation at the CG and CWG sites (W = A or T), respectively, in the mulberry genome between drought stress and control. The distribution of the methylome was prevalent in the intergenic, exonic, intronic and downstream regions of the mulberry plant genome. In addition, we discovered 170 DMGs (129 in CG sites and 41 in CWG sites) and 581 DMS (413 in CG sites and 168 in CWG sites). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicates that phenylpropanoid biosynthesis, spliceosome, amino acid biosynthesis, carbon metabolism, RNA transport, plant hormone, signal transduction pathways, and quorum sensing play a crucial role in mulberry response to drought stress. Furthermore, the qRT-PCR analysis indicates that the selected 23 genes enriched in the KEGG pathways are differentially expressed, and 86.96% of the genes share downregulated methylation and 13.04% share upregulation methylation status, indicating the complex link between DNA methylation and gene regulation. This study serves as fundamentals in discovering the epigenomic status and the pathways that will significantly enhance mulberry breeding for adaptation to a wide range of environments.


2022 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Wei-Sheng Wu ◽  
Jordan S. Brown ◽  
Pin-Hao Chen ◽  
Sheng-Cian Shiue ◽  
Dong-En Lee ◽  
...  

Non-coding RNAs, such as miRNAs and piRNAs, play critical roles in gene regulation through base-pairing interactions with their target molecules. The recent development of the crosslinking, ligation, and sequencing of hybrids (CLASH) method has allowed scientists to map transcriptome-wide RNA–RNA interactions by identifying chimeric reads consisting of fragments from regulatory RNAs and their targets. However, analyzing CLASH data requires scientists to use advanced bioinformatics, and currently available tools are limited for users with little bioinformatic experience. In addition, many published CLASH studies do not show the full scope of RNA–RNA interactions that were captured, highlighting the importance of reanalyzing published data. Here, we present CLASH Analyst, a web server that can analyze raw CLASH data within a fully customizable and easy-to-use interface. CLASH Analyst accepts raw CLASH data as input and identifies the RNA chimeras containing the regulatory and target RNAs according to the user’s interest. Detailed annotation of the captured RNA–RNA interactions is then presented for the user to visualize within the server or download for further analysis. We demonstrate that CLASH Analyst can identify miRNA- and piRNA-targeting sites reported from published CLASH data and should be applicable to analyze other RNA–RNA interactions. CLASH Analyst is freely available for academic use.


Author(s):  
Jordan A. Anderson ◽  
Amanda J. Lea ◽  
Tawni N. Voyles ◽  
Mercy Y. Akinyi ◽  
Ruth Nyakundi ◽  
...  

The social environment is a major determinant of morbidity, mortality and Darwinian fitness in social animals. Recent studies have begun to uncover the molecular processes associated with these relationships, but the degree to which they vary across different dimensions of the social environment remains unclear. Here, we draw on a long-term field study of wild baboons to compare the signatures of affiliative and competitive aspects of the social environment in white blood cell gene regulation, under both immune-stimulated and non-stimulated conditions. We find that the effects of dominance rank on gene expression are directionally opposite in males versus females, such that high-ranking males resemble low-ranking females, and vice versa. Among females, rank and social bond strength are both reflected in the activity of cellular metabolism and proliferation genes. However, while we observe pronounced rank-related differences in baseline immune gene activity, only bond strength predicts the fold-change response to immune (lipopolysaccharide) stimulation. Together, our results indicate that the directionality and magnitude of social effects on gene regulation depend on the aspect of the social environment under study. This heterogeneity may help explain why social environmental effects on health and longevity can also vary between measures. This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’.


2022 ◽  
Author(s):  
Samantha M. Barnada ◽  
Andrew Isopi ◽  
Daniela Tejada-Martinez ◽  
Clement Goubert ◽  
Sruti Patoori ◽  
...  

Domestication of transposable elements (TEs) into functional cis-regulatory elements is a widespread phenomenon. However, the mechanisms behind why some TEs are co-opted as functional enhancers while others are not are underappreciated. SINE-VNTR-Alus (SVAs) are the youngest group of transposons in the human genome, where ~3,700 copies are annotated, nearly half of which are human-specific. Many studies indicate that SVAs are among the most frequently co-opted TEs in human gene regulation, but the mechanisms underlying such processes have not yet been thoroughly investigated. Here, we leveraged CRISPR-interference (CRISPRi), computational and functional genomics to elucidate the genomic features that underlie SVA domestication into human stem-cell gene regulation. We found that ~750 SVAs are co-opted as functional cis-regulatory elements in human induced pluripotent stem cells. These SVAs are significantly closer to genes and harbor more transcription factor binding sites than non-co-opted SVAs. We show that a long DNA motif composed of flanking YY1/2 and OCT4 binding sites is enriched in the co-opted SVAs and that these two transcription factors bind consecutively on the TE sequence. We used CRISPRi to epigenetically repress active SVAs in stem cell-like NCCIT cells. Epigenetic perturbation of active SVAs strongly attenuated YY1/OCT4 binding and influenced neighboring gene expression. Ultimately, SVA repression resulted in ~3,000 differentially expressed genes, 131 of which were the nearest gene to an annotated SVA. In summary, we demonstrated that SVAs modulate human gene expression, and uncovered that location and sequence composition contribute to SVA domestication into gene regulatory networks.


Author(s):  
Noah D. Simons ◽  
Vasiliki Michopoulos ◽  
Mark Wilson ◽  
Luis B. Barreiro ◽  
Jenny Tung

Variation in social status predicts molecular, physiological and life-history outcomes across a broad range of species, including our own. Experimental studies indicate that some of these relationships persist even when the physical environment is held constant. Here, we draw on datasets from one such study—experimental manipulation of dominance rank in captive female rhesus macaques—to investigate how social status shapes the lived experience of these animals to alter gene regulation, glucocorticoid physiology and mitochondrial DNA phenotypes. We focus specifically on dominance rank-associated dimensions of the social environment, including both competitive and affiliative interactions. Our results show that simple summaries of rank-associated behavioural interactions are often better predictors of molecular and physiological outcomes than dominance rank itself. However, while measures of immune function are best explained by agonism rates, glucocorticoid-related phenotypes tend to be more closely linked to affiliative behaviour. We conclude that dominance rank serves as a useful summary for investigating social environmental effects on downstream outcomes. Nevertheless, the behavioural interactions that define an individual's daily experiences reveal the proximate drivers of social status-related differences and are especially relevant for understanding why individuals who share the same social status sometimes appear physiologically distinct. This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’.


2022 ◽  
Author(s):  
Christopher Sebastian Jürges ◽  
Manivel Lodha ◽  
Vu Thuy Khanh Le-Trilling ◽  
Pranjali Bhandare ◽  
Elmar Wolf ◽  
...  

For decades, human cytomegalovirus (HCMV) was thought to express ≈200 viral proteins during lytic infection. In recent years, systems biology approaches uncovered hundreds of additional viral gene products and suggested thousands of viral sites of transcription initiation. Despite all available data, the molecular mechanisms of HCMV gene regulation remain poorly understood. Here, we provide a unifying model of productive HCMV gene expression employing transcription start site profiling combined with metabolic RNA labeling as well as integrative computational analysis of previously published big data. This approach defined the expression of >2,600 high confidence viral transcripts and explained the complex kinetics of viral protein expression by cumulative effects of translation of incoming virion-associated RNA, multiple transcription start sites with distinct kinetics per viral open reading frame, and differences in viral protein stability. Most importantly, we identify pervasive transcription of transient RNAs as a common feature of this large DNA virus with its human host.


Sign in / Sign up

Export Citation Format

Share Document