phosphate starvation
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 102)

H-INDEX

70
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoning Gao ◽  
Jinsong Dong ◽  
Fatemeh Rasouli ◽  
Ali Kiani Pouya ◽  
Ayesha T. Tahir ◽  
...  

Abstract Background Chilling temperature reduces the rate of photosynthesis in plants, which is more pronounced in association with phosphate (Pi) starvation. Previous studies showed that Pi resupply improves recovery of the rate of photosynthesis in plants much better under combination of dual stresses than in non-chilled samples. However, the underlying mechanism remains poorly understood. Results In this study, RNA-seq analysis showed the expression level of 41 photosynthetic genes in plant roots increased under phosphate starvation associated with 4 °C (-P 4 °C) compared to -P 23 °C. Moreover, iron uptake increased significantly in the stem cell niche (SCN) of wild type (WT) roots in -P 4 °C. In contrast, lower iron concentrations were found in SCN of aluminum activated malate transporter 1 (almt1) and its transcription factor, sensitive to protein rhizotoxicity 1 (stop1) mutants under -P 4 °C. The Fe content examined by ICP-MS analysis in -P 4 °C treated almt1 was 98.5 ng/µg, which was only 17% of that of seedlings grown under -P 23 °C. Average plastid number in almt1 root cells under -P 4 °C was less than -P 23 °C. Furthermore, stop1 and almt1 single mutants both exhibited increased primary root elongation than WT under combined stresses. In addition, dark treatment blocked the root elongation phenotype of stop1 and almt1. Conclusions Induction of photosynthetic gene expression and increased iron accumulation in roots is required for plant adjustment to chilling in association with phosphate starvation.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Maikel Acosta-Zaldivar ◽  
Wanjun Qi ◽  
Ning-Ning Liu ◽  
Joann Diray-Arce ◽  
Louise A. Walker ◽  
...  

The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin signaling, oxidative stress resistance and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild type cells recovering from phosphate starvation. Non-phosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar,GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. Our model is that low substrate concentrations of beta-D-glucan- and chitin synthases diminish enzymatic reaction rates and potentiate pharmacologic inhibitors to decrease the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-D-glucans or chitin. Hence inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.


Author(s):  
Hitika Gulabani ◽  
Krishnendu Goswami ◽  
Yashika Walia ◽  
Abhisha Roy ◽  
Jewel Jameeta Noor ◽  
...  

2021 ◽  
Author(s):  
Debatosh Das ◽  
Michael Paries ◽  
Karen Hobecker ◽  
Michael Gigl ◽  
Corinna Dawid ◽  
...  

Arbuscular mycorrhiza (AM) is a widespread symbiosis between roots of the majority of land plants and Glomeromycotina fungi. AM is important for ecosystem health and functioning as the fungi critically support plant performance by providing essential mineral nutrients, particularly the poorly accessible phosphate, in exchange for organic carbon. AM fungi colonize the inside of roots and this is promoted at low but inhibited at high plant phosphate status, while the mechanistic basis for this phosphate-dependence remained obscure. Here we demonstrate that a major transcriptional regulator of phosphate starvation responses in rice PHOSPHATE STARVATION RESPONSE 2 (PHR2) regulates AM. Root colonization of phr2 mutants is drastically reduced, and PHR2 is required for root colonization, mycorrhizal phosphate uptake, and yield increase in field soil. PHR2 promotes AM by targeting genes required for pre-contact signaling, root colonization, and AM function. Thus, this important symbiosis is directly wired to the PHR2-controlled plant phosphate starvation response.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2133
Author(s):  
Weifang Wu ◽  
Haoshun Zhao ◽  
Qin Deng ◽  
Haiyang Yang ◽  
Xiaoxiao Guan ◽  
...  

Watermelon (Citrullus lanatus) is a globally important Cucurbitaceae crop in which grafting is commonly used to improve stress tolerance and enhance nutrient utilization. However, the mechanism underlying grafting-enhanced nutrient assimilation remains unclear. Here, we demonstrate the possible involvement of a novel Cucurbitaceae miRNA, ClmiR86, in grafting-enhanced phosphate-starvation tolerance via CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE 5 (ClCIPK5) suppression in watermelon. Transcript analyses revealed that the induction of ClmiR86 expression was correlated with the downregulation of ClCIPK5 in squash-grafted watermelon under phosphate starvation. In addition, the differential expression of ClmiR86 in various watermelon genotypes was consistent with their phosphate utilization efficiency. Furthermore, ClmiR86 overexpression in Arabidopsis enhanced root growth and phosphate uptake under phosphate starvation and promoted inflorescence elongation under normal conditions. These results suggest that the ClmiR86–ClCIPK5 axis is involved in phosphate starvation response as well as grafting-enhanced growth vigor and phosphate assimilation. The present study provides valuable insights for investigating long-distance signaling and nutrient utilization in plants.


Sign in / Sign up

Export Citation Format

Share Document