scholarly journals The Crystal Structure of the Ubiquitin-like Domain of Ribosome Assembly Factor Ytm1 and Characterization of Its Interaction with the AAA-ATPase Midasin

2015 ◽  
Vol 291 (2) ◽  
pp. 882-893 ◽  
Author(s):  
Erin M. Romes ◽  
Mack Sobhany ◽  
Robin E. Stanley
2022 ◽  
Author(s):  
Ning Gao ◽  
Chengying Ma ◽  
Damu Wu ◽  
Qian Chen

Abstract The AAA+ ATPase Drg1 is a ribosome assembly factor in yeast, and functions to release Rlp24, another assembly factor, from the pre-60S particle just exported from nucleus to initiate its further cytoplasmic maturation. Being a type II AAA+ protein with two ATPase domains (D1 and D2), its activity in ribosome assembly can be inhibited by a drug molecule diazaborine. In human, mutations of Drg1 homologue has been linked to a disease condition called epilepsy, hearing loss, and mental retardation syndrome. Although the general structure of Drg1 hexamer was recently reported, its complete structure and dynamic conformational rearrangements driven by ATP-hydrolysis are poorly understood. Here, we report a comprehensive structural characterization of Drg1 hexamers in different nucleotide-binding and benzo-diazaborine treated states. Our data show that Drg1 hexamers transits between two extreme conformations, characterized by a planar or helical arrangement of its six protomers. By forming covalent adducts with the ATP molecules in the active centers of both D1 and D2, benzo-diazaborine locks Drg1 hexamers in a more symmetric and non-productive conformation. In addition, we obtained the structure of a mutant Drg1 hexamer (Walker B mutations) with a polypeptide trapped in the central channel, representing a 3D snapshot of its functional, substrate-processing form. Conserved pore loops on the ATPase domains of Drg1 form a spiral staircase to interact with the substrate through a sequence-independent manner. These results suggest that Drg1, similar as Cdc48/p97, acts as a molecular unfoldase to remodel pre-60S particles, and benzo-diazaborine inhibits both the inter-protomer and inter-ring communication to disable the conformational cycling of Drg1 protomers required for the unfolding activity.


Author(s):  
M. Bidya Sagar ◽  
K. Ravikumar ◽  
Y. S. Sadanandam

AbstractThe crystallographic characterization of the following three calcium channel antagonists is reported here: 2,6-dimethyl-3,5-dicarbamoyl-4-[2-nitro]-1,4-dihydropyridine (


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Nina Arnosti ◽  
Marco Meyer ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

The preparation and characterization of [Cu(POP)(biq)][PF6] and [Cu(xantphos)(biq)][PF6] are reported (biq = 1,1′-biisoquinoline, POP = bis(2-(diphenylphosphanyl)phenyl)ether, and xantphos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane). The single crystal structure of [Cu(POP)(biq)][PF6] 0.5Et2O was determined and compared to that in three salts of [Cu(POP)(bq)]+ in which bq = 2,2′-biquinoline. The P–C–P angle is 114.456(19)o in [Cu(POP)(biq)]+ compared to a range of 118.29(3)–119.60(3)o [Cu(POP)(bq)]+. There is a change from an intra-POP PPh2-phenyl/(C6H4)2O-arene π-stacking in [Cu(POP)(biq)]+ to a π-stacking contact between the POP and bq ligands in [Cu(POP)(bq)]+. In solution and at ambient temperatures, the [Cu(POP)(biq)][PF6]+ and [Cu(xantphos)(biq)]+ cations undergo several concurrent dynamic processes, as evidenced in their multinuclear NMR spectra. The photophysical and electrochemical behaviors of the heteroleptic copper (I) complexes were investigated, and the effects of changing from bq to biq are described. Short Cu···O distances within the [Cu(POP)(biq)]+ and [Cu(xantphos)(biq)]+ cations may contribute to their very low photoluminescent quantum yields.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1164-1171
Author(s):  
Xiangmei Wang ◽  
Zeliang Gao ◽  
Chunyan Wang ◽  
Xiaojie Guo ◽  
Youxuan Sun ◽  
...  

This work reports the crystal structure and physical properties of the Y2Mo4O15 crystal and its potential use in the Raman laser.


2021 ◽  
Vol 1940 (1) ◽  
pp. 012029
Author(s):  
K Dahlan ◽  
E Haryati ◽  
Y D Sokoy ◽  
O Togibasa ◽  
U Sa’adah

Sign in / Sign up

Export Citation Format

Share Document