chromatin assembly
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 44)

H-INDEX

71
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Weifang Wu ◽  
Toni McHugh ◽  
David A Kelly ◽  
Alison L Pidoux ◽  
Robin C Allshire

The establishment of centromere-specific CENP-A chromatin is influenced by epigenetic and genetic processes. Central domain sequences from fission yeast centromeres are preferred substrates for CENP-ACnp1 incorporation, but their use is context dependent, requiring adjacent heterochromatin. CENP-ACnp1 overexpression bypasses heterochromatin dependency, suggesting heterochromatin ensures exposure to conditions or locations permissive for CENP-ACnp1 assembly. Centromeres cluster around spindle-pole bodies (SPBs). We show that heterochromatin-bearing minichromosomes localize close to SPBs, consistent with this location promoting CENP-ACnp1 incorporation. We demonstrate that heterochromatin-independent de novo CENP-ACnp1 chromatin assembly occurs when central domain DNA is placed near, but not far from, endogenous centromeres or neocentromeres. Moreover, direct tethering of central domain DNA at SPBs permits CENP-ACnp1 assembly, suggesting that the nuclear compartment surrounding SPBs is permissive for CENP-ACnp1 incorporation because target sequences are exposed to high levels of CENP-ACnp1 and associated assembly factors. Thus, nuclear spatial organization is a key epigenetic factor that influences centromere identity.


2021 ◽  
Vol 16 (10) ◽  
pp. 171-178
Author(s):  
Shruti Sinha ◽  
K.V. Chaitanya

Folding eukaryotic DNA by chromatin is a vital process necessary for the proper function of DNA. This is achieved by the fundamental unit of chromatin, known as a nucleosome. The position of a nucleosome and its interaction with DNA plays a crucial role in regulating the vital processes involved in DNA function. Factors such as variations in nucleosome and its core structure and histone fold variations will help to understand nucleosome functions and their role in DNA replication, transcription, translation, posttranslational modifications, re-combinations and repair. The present review focuses on recent findings in understanding the variations in the structure and functions of nucleosomes across eukaryotes. Variations in the nucleosome organization and its assembly have also been discussed by stating the contribution of histone binding factors and chromatin assembly factors.


DNA Repair ◽  
2021 ◽  
pp. 103157
Author(s):  
Sefinew Molla ◽  
Subhajit Chatterjee ◽  
Chinmayee Sethy ◽  
Saptarshi Sinha ◽  
Chanakya Nath Kundu

2021 ◽  
Author(s):  
Syed N Shah

Histones H3/H4 are deposited onto DNA in a replication-dependent or independent fashion by the CAF1 and HIRA protein complexes. Despite the identification of these protein complexes, mechanistic details remain unclear. Recently, we showed that in T. thermophila histone chaperones Nrp1, Asf1 and the Impβ6 importin function together to transport newly synthesized H3/H4 from the cytoplasm to the nucleus. To characterize chromatin assembly proteins in T.thermophila, I used affinity purification combined with mass spectrometry to identify protein-protein interactions of Nrp1, Cac2 subunit of CAF1, HIRA and histone modifying Hat1-complex in T. thermophila. I found that the three-subunit T.thermophila CAF1 complex interacts with Casein Kinase 2 (CKII), possibly accounting for previously reported human CAF1phosphorylation. I also found that Hat2 subunit of HAT1 complex is also shared by CAF1 complex as its Cac3 subunit. This suggests that Hat2/Cac3 might exist in two separate pools of protein complexes. Remarkably, proteomic analysis of Hat2/Cac3 in turn revealed that it forms several complexes with other proteins including SIN3, RXT3, LIN9 and TESMIN, all of which have known roles in the regulation of gene expression. Finally, I asked how selective forces might have impacted on the function of proteins involved in H3/H4 transport. Focusing on NASP which possesses several TPR motifs, I showed that its protein-protein interactions are conserved in T. thermophila. Using molecular evolutionary methods I show that different TPRs in NASP evolve at different rates possibly accounting for the functional diversity observed among different family members.


2021 ◽  
Author(s):  
Renu Jeyapala

The basic structural unit of chromatin is the nucleosome composed of ~147 base pairs of DNA wrapped around an octamer of histone proteins. Post-translational modifications such as histone acetylation or the substitution of histone variants in place of core histones have been implicated in various chromatin related processes. There are two distinct chromatin assembly pathways. Replication-dependent mediated by CAF-1 (H3-H4) and replication-independent mediated by HIRA (H3.3-H4). Miss-regulation of chromatin assembly patterns result in the onset of many disease states such as cancer. Tetrahymena thermophila is a useful model for understanding basic questions in chromatin biology due to the segregation of transcriptionally active and silent chromatin into two distinct nuclei. To better characterize replication-dependent and independent chromatin assembly pathways in T. thermophila, I have engineered somatic knockouts (HIRA, CAC2, UBN1 and UBN2) and initiated the functional analysis of these chromatin assembly genes mediated in growth and development. The absence of CAC2 results in larger macronuclei and speculated to be a result of reduced histone H3-H4 deposition onto chromatin during growth.


2021 ◽  
Author(s):  
Renu Jeyapala

The basic structural unit of chromatin is the nucleosome composed of ~147 base pairs of DNA wrapped around an octamer of histone proteins. Post-translational modifications such as histone acetylation or the substitution of histone variants in place of core histones have been implicated in various chromatin related processes. There are two distinct chromatin assembly pathways. Replication-dependent mediated by CAF-1 (H3-H4) and replication-independent mediated by HIRA (H3.3-H4). Miss-regulation of chromatin assembly patterns result in the onset of many disease states such as cancer. Tetrahymena thermophila is a useful model for understanding basic questions in chromatin biology due to the segregation of transcriptionally active and silent chromatin into two distinct nuclei. To better characterize replication-dependent and independent chromatin assembly pathways in T. thermophila, I have engineered somatic knockouts (HIRA, CAC2, UBN1 and UBN2) and initiated the functional analysis of these chromatin assembly genes mediated in growth and development. The absence of CAC2 results in larger macronuclei and speculated to be a result of reduced histone H3-H4 deposition onto chromatin during growth.


2021 ◽  
Author(s):  
Syed N Shah

Histones H3/H4 are deposited onto DNA in a replication-dependent or independent fashion by the CAF1 and HIRA protein complexes. Despite the identification of these protein complexes, mechanistic details remain unclear. Recently, we showed that in T. thermophila histone chaperones Nrp1, Asf1 and the Impβ6 importin function together to transport newly synthesized H3/H4 from the cytoplasm to the nucleus. To characterize chromatin assembly proteins in T.thermophila, I used affinity purification combined with mass spectrometry to identify protein-protein interactions of Nrp1, Cac2 subunit of CAF1, HIRA and histone modifying Hat1-complex in T. thermophila. I found that the three-subunit T.thermophila CAF1 complex interacts with Casein Kinase 2 (CKII), possibly accounting for previously reported human CAF1phosphorylation. I also found that Hat2 subunit of HAT1 complex is also shared by CAF1 complex as its Cac3 subunit. This suggests that Hat2/Cac3 might exist in two separate pools of protein complexes. Remarkably, proteomic analysis of Hat2/Cac3 in turn revealed that it forms several complexes with other proteins including SIN3, RXT3, LIN9 and TESMIN, all of which have known roles in the regulation of gene expression. Finally, I asked how selective forces might have impacted on the function of proteins involved in H3/H4 transport. Focusing on NASP which possesses several TPR motifs, I showed that its protein-protein interactions are conserved in T. thermophila. Using molecular evolutionary methods I show that different TPRs in NASP evolve at different rates possibly accounting for the functional diversity observed among different family members.


2021 ◽  
Author(s):  
Nora Saud Dannah

Understanding the regulation of chromatin structure is a vital aspect of molecular biology regarding its influences on biological processes such as DNA replication, transcription (gene expression), DNA repair, chromosome segregation and recombination. In the budding yeast Saccharomyces cerevisiae, a histone chaperone called Hif1 has been found in the nuclei as having a functional role in chromatin assembly. Hif1 is a homolog of the human protein NASP that is involved in the maintenance of genome stability. Previously, Hif1 has been shown to physically interact with Hat1, Hat2 and H3/H4 to form the NuB4 complex directly involved in chromatin assembly. A molecular genetic approach was conducted to determine which domain of Hif1 is involved in the interaction with the HAT1 complex.


Sign in / Sign up

Export Citation Format

Share Document