scholarly journals The Novel Nucleoside Analog R1479 (4′-Azidocytidine) Is a Potent Inhibitor of NS5B-dependent RNA Synthesis and Hepatitis C Virus Replication in Cell Culture

2006 ◽  
Vol 281 (7) ◽  
pp. 3793-3799 ◽  
Author(s):  
Klaus Klumpp ◽  
Vincent Lévêque ◽  
Sophie Le Pogam ◽  
Han Ma ◽  
Wen-Rong Jiang ◽  
...  
2019 ◽  
Vol 165 (2) ◽  
pp. 331-343 ◽  
Author(s):  
Nobuyuki Kato ◽  
Youki Ueda ◽  
Hiroe Sejima ◽  
Weilin Gu ◽  
Shinya Satoh ◽  
...  

2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaojun Zhou ◽  
Yang Zeng ◽  
Junfeng Li ◽  
Yan Guo ◽  
Yuanhui Fu ◽  
...  

2006 ◽  
Vol 17 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Lieven J Stuyver ◽  
Tamara R McBrayer ◽  
Phillip M Tharnish ◽  
Jeremy Clark ◽  
Laurent Hollecker ◽  
...  

2012 ◽  
Vol 22 (9) ◽  
pp. 3265-3268 ◽  
Author(s):  
Magnus Nilsson ◽  
Genadiy Kalayanov ◽  
Anna Winqvist ◽  
Pedro Pinho ◽  
Christian Sund ◽  
...  

2009 ◽  
Vol 83 (22) ◽  
pp. 11926-11939 ◽  
Author(s):  
Philip Simister ◽  
Melanie Schmitt ◽  
Matthis Geitmann ◽  
Oliver Wicht ◽  
U. Helena Danielson ◽  
...  

ABSTRACT The hepatitis C virus (HCV) isolate JFH1 represents the only cloned wild-type sequence capable of efficient replication in cell culture, as well as in chimpanzees. Previous reports have pointed to the viral polymerase NS5B as a major determinant for efficient replication of this isolate. To understand the underlying mechanisms, we expressed and purified NS5B of JFH1 and of the closely related isolate J6, which replicates below the limit of detection in cell culture. The JFH1 enzyme exhibited a 5- to 10-fold-higher specific activity in vitro, consistent with the polymerase activity itself contributing to efficient replication of JFH1. The higher in vitro activity of the JFH1 enzyme was not due to increased RNA binding, elongation rate, or processivity of the polymerase but to higher initiation efficiency. By using homopolymeric and heteropolymeric templates, we found that purified JFH1 NS5B was significantly more efficient in de novo initiation of RNA synthesis than the J6 counterpart, particularly at low GTP concentrations, probably representing an important prerequisite for the rapid replication kinetics of JFH1. Furthermore, we solved the crystal structure of JFH1 NS5B, which displays a very closed conformation that is expected to facilitate de novo initiation. Structural analysis shows that this closed conformation is stabilized by a sprinkle of substitutions that together promote extra hydrophobic interactions between the subdomains “thumb” and “fingers.” These analyses provide deeper insights into the initiation of HCV RNA synthesis and might help to establish more efficient cell culture models for HCV using alternative isolates.


Sign in / Sign up

Export Citation Format

Share Document