scholarly journals Single Strand Annealing and ATP-independent Strand Exchange Activities of Yeast and Human DNA2

2006 ◽  
Vol 281 (50) ◽  
pp. 38555-38564 ◽  
Author(s):  
Taro Masuda-Sasa ◽  
Piotr Polaczek ◽  
Judith L. Campbell
2018 ◽  
Vol 71 (4) ◽  
pp. 621-628.e4 ◽  
Author(s):  
Anaid Benitez ◽  
Wenjun Liu ◽  
Anna Palovcak ◽  
Guanying Wang ◽  
Jaewon Moon ◽  
...  

Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 597-611 ◽  
Author(s):  
Francisco Malagón ◽  
Andrés Aguilera

AbstractWe have shown that the spt6-140 and spt4-3 mutations, affecting chromatin structure and transcription, stimulate recombination between inverted repeats by a RAD52-dependent mechanism that is very efficient in the absence of RAD51, RAD54, RAD55, and RAD57. Such a mechanism of recombination is RAD1-RAD59-dependent and yields gene conversions highly associated with the inversion of the repeat. The spt6-140 mutation alters transcription and chromatin in our inverted repeats, as determined by Northern and micrococcal nuclease sensitivity analyses, respectively. Hyper-recombination levels are diminished in the absence of transcription. We believe that the chromatin alteration, together with transcription impairment caused by spt6-140, increases the incidence of spontaneous recombination regardless of whether or not it is mediated by Rad51p-dependent strand exchange. Our results suggest that spt6, as well as spt4, primarily stimulates a mechanism of break-induced replication. We discuss the possibility that the chromatin alteration caused by spt6-140 facilitates a Rad52p-mediated one-ended strand invasion event, possibly inefficient in wild-type chromatin. Our results are consistent with the idea that the major mechanism leading to inversions might not be crossing over but break-induced replication followed by single-strand annealing.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 515-525 ◽  
Author(s):  
Allison P Davis ◽  
Lorraine S Symington

Abstract The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.


2015 ◽  
Vol 412 (1-2) ◽  
pp. 131-139
Author(s):  
Melina Mardirosian ◽  
Linette Nalbandyan ◽  
Aaron D. Miller ◽  
Claire Phan ◽  
Eric P. Kelson ◽  
...  

2018 ◽  
Vol 102 (23) ◽  
pp. 10119-10126
Author(s):  
Zhixin Luo ◽  
Shanhe Wang ◽  
Beilei Jiao ◽  
Dan Yuan ◽  
Dongmei Dai ◽  
...  

2020 ◽  
Vol 146 (11) ◽  
pp. 3098-3113 ◽  
Author(s):  
Masaoki Kohzaki ◽  
Akira Ootsuyama ◽  
Lue Sun ◽  
Takashi Moritake ◽  
Ryuji Okazaki

Sign in / Sign up

Export Citation Format

Share Document