scholarly journals Precursor Protein Is Readily Degraded in Mitochondrial Matrix Space if the Leader Is Not Processed by Mitochondrial Processing Peptidase

2007 ◽  
Vol 282 (51) ◽  
pp. 37266-37275 ◽  
Author(s):  
Abhijit Mukhopadhyay ◽  
Chun-song Yang ◽  
Baoxian Wei ◽  
Henry Weiner
Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 346
Author(s):  
Juhyun Sim ◽  
Jiyoung Park ◽  
Hyun Ae Woo ◽  
Sue Goo Rhee

Prx V mRNA contains two in-frame AUG codons, producing a long (L-Prx V) and short form of Prx V (S-Prx V), and mouse L-Prx V is expressed as a precursor protein containing a 49-amino acid N-terminal mitochondria targeting sequence. Here, we show that the N-terminal 41-residue sequence of L-Prx V is cleaved by mitochondrial processing peptidase (MPP) in the mitochondrial matrix to produce an intermediate Prx V (I-Prx V) with a destabilizing phenylalanine at its N-terminus, and further, that the next 8-residue sequence is cleaved by mitochondrial intermediate peptidase (MIP) to convert I-Prx V to a stabilized mature form that is identical to S-Prx V. Further, we show that when mitochondrial H2O2 levels are increased in HeLa cells using rotenone, in several mouse tissues by deleting Prx III, and in the adrenal gland by deleting Srx or by exposing mice to immobilized stress, I-Prx V accumulates transiently and mature S-Prx V levels decrease in mitochondria over time. These findings support the view that MIP is inhibited by H2O2, resulting in the accumulation and subsequent degradation of I-Prx V, identifying a role for redox mediated regulation of Prx V proteolytic maturation and expression in mitochondria.


2020 ◽  
Author(s):  
Jana Friedl ◽  
Michael R. Knopp ◽  
Carina Groh ◽  
Eyal Paz ◽  
Sven B. Gould ◽  
...  

AbstractMost mitochondrial proteins are synthesized in the cytosol as precursors that carry N-terminal presequences. After import into mitochondria, these targeting signals are cleaved off by the mitochondrial processing peptidase MPP, giving rise to shorter mature proteins. Using the mitochondrial tandem protein Arg5,6 as a model substrate, we demonstrate that MPP has an additional role in preprotein maturation, beyond the removal of presequences. Arg5,6 is synthesized as a polyprotein precursor that is imported into the mitochondrial matrix and subsequently separated into two distinct enzymes that function in arginine biogenesis. This internal processing is performed by MPP, which cleaves the Arg5,6 precursor both at its N-terminus and at an internal site between the Arg5 and Arg6 parts. The peculiar organization and biogenesis of Arg5,6 is conserved across fungi and might preserve the mode of co-translational subunit association of the arginine biosynthesis complex of the polycistronic arginine operon in prokaryotic mitochondrial ancestors. Putative MPP cleavage sites are also present at the junctions in other mitochondrial fusion proteins from fungi, plants and animals. Our data suggest that, in addition to its role as “ticket canceller” for the removal of presequences, MPP exhibits a second, widely conserved activity as internal processing peptidase for complex mitochondrial precursor proteins.


2005 ◽  
Vol 385 (3) ◽  
pp. 755-761 ◽  
Author(s):  
Tsutomu OSHIMA ◽  
Eiki YAMASAKI ◽  
Tadashi OGISHIMA ◽  
Koh-ichi KADOWAKI ◽  
Akio ITO ◽  
...  

The nuclear-encoded protein RPS14 (ribosomal protein S14) of rice mitochondria is synthesized in the cytosol as a polyprotein consisting of a large N-terminal domain comprising preSDHB (succinate dehydrogenase B precursor) and the C-terminal RPS14. After the preSDHB–RPS14 polyprotein is transported into the mitochondrial matrix, the protein is processed into three peptides: the N-terminal prepeptide, the SDHB domain and the C-terminal mature RPS14. Here we report that the general MPP (mitochondrial processing peptidase) plays an essential role in processing of the polyprotein. Purified yeast MPP cleaved both the N-terminal presequence and the connector region between SDHB and RPS14. Moreover, the connector region was processed more rapidly than the presequence. When the site of cleavage between SDHB and RPS14 was determined, it was located in an MPP processing motif that has also been shown to be present in the N-terminal presequence. Mutational analyses around the cleavage site in the connector region suggested that MPP interacts with multiple sites in the region, possibly in a similar manner to the interaction with the N-terminal presequence. In addition, MPP preferentially recognized the unfolded structure of preSDHB–RPS14. In mitochondria, MPP may recognize the stretched polyprotein during passage of the precursor through the translocational apparatus in the inner membrane, and cleave the connecting region between the SDHB and RPS14 domains even before processing of the presequence.


2016 ◽  
Vol 27 (20) ◽  
pp. 3031-3039 ◽  
Author(s):  
Michael W. Woellhaf ◽  
Frederik Sommer ◽  
Michael Schroda ◽  
Johannes M. Herrmann

Whereas the structure and function of cytosolic ribosomes are well characterized, we only have a limited understanding of the mitochondrial translation apparatus. Using SILAC-based proteomic profiling, we identified 13 proteins that cofractionated with the mitochondrial ribosome, most of which play a role in translation or ribosomal biogenesis. One of these proteins is a homologue of the bacterial ribosome-silencing factor (Rsf). This protein is generated from the composite precursor protein Atp25 upon internal cleavage by the matrix processing peptidase MPP, and in this respect, it differs from all other characterized mitochondrial proteins of baker’s yeast. We observed that cytosolic expression of Rsf, but not of noncleaved Atp25 protein, is toxic. Our results suggest that eukaryotic cells face the challenge of avoiding negative interference from the biogenesis of their two distinct translation machineries.


1994 ◽  
Vol 269 (7) ◽  
pp. 4959-4967 ◽  
Author(s):  
M. Arretz ◽  
H. Schneider ◽  
B. Guiard ◽  
M. Brunner ◽  
W. Neupert

Sign in / Sign up

Export Citation Format

Share Document