ribosomal biogenesis
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
pp. 268-277
Author(s):  
Yong-Zhi Li ◽  
Cheng Zhang ◽  
Jun-Peng Pei ◽  
Wan-Chuan Zhang ◽  
Chun-Dong Zhang ◽  
...  

2021 ◽  
Author(s):  
Michael Claiborne ◽  
Srona Sengupta ◽  
Liang Zhao ◽  
Matthew L Arwood ◽  
Im-Meng Sun ◽  
...  

Memory CD8+ T cells are characterized by their ability to persist long after the initial antigen encounter and their ability to generate a rapid recall response. Recent studies have identified a role for metabolic reprogramming and mitochondrial function in promoting the longevity of memory T cells. However, detailed mechanisms involved in promoting the rapid recall response are incompletely understood. Here we identify a novel role for the initial and continued activation of the trifunctional rate-limiting enzyme of the de novo pyrimidine synthesis pathway CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) as critical in promoting the rapid recall response of previously-activated CD8+ T cells. CAD is rapidly phosphorylated upon T cell activation in an mTORC1-dependent manner yet remains phosphorylated long after initial activation. Previously-activated CD8+ T cells display continued de novo pyrimidine synthesis in the absence of mitogenic signals and interfering with this pathway diminishes the speed and magnitude of cytokine production upon rechallenge. Inhibition of CAD does not affect cytokine transcript levels, but diminishes available pre-rRNA, the polycistronic rRNA precursor whose synthesis is the rate-limiting step in ribosomal biogenesis. CAD inhibition additionally decreases levels of detectable ribosomal proteins in previously-activated CD8+ T cells. Overexpression of CAD improves both the cytokine response and proliferation of memory T cells. Overall, our studies reveal a novel and critical role for CAD-induced pyrimidine synthesis and ribosomal biogenesis in promoting the rapid recall response characteristic of memory T cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Morgane Boone ◽  
Pathmanaban Ramasamy ◽  
Jasper Zuallaert ◽  
Robbin Bouwmeester ◽  
Berre Van Moer ◽  
...  

AbstractWhile transcriptome- and proteome-wide technologies to assess processes in protein biogenesis are now widely available, we still lack global approaches to assay post-ribosomal biogenesis events, in particular those occurring in the eukaryotic secretory system. We here develop a method, SECRiFY, to simultaneously assess the secretability of >105 protein fragments by two yeast species, S. cerevisiae and P. pastoris, using custom fragment libraries, surface display and a sequencing-based readout. Screening human proteome fragments with a median size of 50–100 amino acids, we generate datasets that enable datamining into protein features underlying secretability, revealing a striking role for intrinsic disorder and chain flexibility. The SECRiFY methodology generates sufficient amounts of annotated data for advanced machine learning methods to deduce secretability patterns. The finding that secretability is indeed a learnable feature of protein sequences provides a solid base for application-focused studies.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3257-3257
Author(s):  
Wenqing Wang ◽  
Andrew Devilbiss ◽  
Martin Arreola ◽  
Thomas Mathews ◽  
Misty Martin-Sandoval ◽  
...  

Abstract Reticular Dysgenesis (RD) is a particularly grave form of severe combined immunodeficiency (SCID), characterized by maturation arrest of both myeloid and lymphoid lineages paired with sensorineural hearing loss. RD is caused by biallelic mutations in the mitochondrial enzyme adenylate kinase 2 (AK2). AK2 catalyzes the phosphorylation of adenosine monophosphate (AMP) to adenosine diphosphate (ADP) in the mitochondrial intermembrane space. Using a CRISPR/Cas9 AK2 biallelic knock out model in human hematopoietic stem and progenitor cells (HSPCs), we have shown that AK2 -/- HSPCs mimic the neutrophil maturation defect in RD patients. Mitochondrial respiration is compromised in AK2 -/- HSPCs, which leads to a decreased NAD +/NADH ratio resulting in reductive stress. Metabolomics analysis by LC-MS/MS showed a significant accumulation of AMP, along with increased AMP/ADP and AMP/ATP ratios in AK2 -/- HSPCs, suggesting that purine metabolism is compromised by AK2 deficiency. Purine metabolism defects, such as deficiencies in adenosine deaminase (ADA) and purine nucleotide phosphorylase (PNP), have long been recognized as a cause of SCID. Furthermore, pharmacological interference with purine metabolism is a highly effective antiproliferative strategy in cancer therapy. In this study, we sought to investigate whether impaired purine metabolism contributes to the myelopoietic defect caused by AK2 deficiency. Results We explored how purine metabolism affects myelopoiesis by differentiating HSPCs in media containing no nucleosides (nucleoside-), mixed nucleosides (nucleoside+) or adenosine only (adenosine+). We observed no difference in proliferation or neutrophil maturation between nucleosides- and nucleoside+ media for both control and AK2 -/- HSPCs, suggesting that AK2 -/- HSPCs do not rely on exogenous nucleosides. Interestingly, control HSPCs cultured in adenosine+ media showed severe proliferation and neutrophil maturation defects that mimic AK2 deficiency, suggesting that purine imbalance is detrimental to myelopoiesis. Previous metabolomics analysis showed a significant accumulation of inosine monophosphate (IMP) in AK2 -/- HSPCs. Since IMP can be produced through AMP deamination by AMPD, we asked whether the IMP accumulation in AK2 -/- HSPCs is caused by converting excess AMP to IMP. An LC-MS/MS analysis showed that AMPD inhibitor (AMPDi) treatment significantly lowered IMP levels and increased AMP levels in AK2 -/- HSPCs, indicating that AMP deamination is a major source of IMP accumulation in AK2 -/- HSPCs. Furthermore, AMPDi treatment did not improve, but rather slightly aggravated neutrophil differentiation in AK2 -/- HSPCs, suggesting that the AK2 -/- neutrophil maturation defect is not caused by IMP accumulation. This raises the possibility that AK2 -/- HSPCs employ AMP deamination as a mechanism to curtail the toxicity of excess AMP. Since purine is a building block of RNA, and ribosomal RNA (rRNA) constitutes >85% of cellular RNA content, we asked whether rRNA synthesis is compromised by AK2 deficiency. Pyronin Y staining showed a significant decrease in rRNA content in AK2 -/- HSPCs. Nascent peptide synthesis rate was also decreased in AK2 -/- HSPCs, as quantified by OP-puromycin uptake. These findings are corroborated by RNA-seq analysis of AK2 -/- and control HSPCs, which showed that ribosomal subunits, ribosomal biogenesis and ribonucleoprotein complex assembly are among the top down-regulated pathways. The data suggest that defective purine metabolism in AK2 -/- HSPCs impairs ribosomal biogenesis and protein synthesis. Conclusion Our studies showed that purine imbalance in HSPCs impairs myeloid proliferation and neutrophil maturation. AK2 depletion in HSPCs leads to AMP accumulation and defective ribosomal biogenesis. AK2 -/- HSPCs convert excess AMP to IMP, possibly as a means to mitigate AMP toxicity. However, AMP deamination activities alone are not sufficient to lower AMP levels to those of control HSPCs. We are currently testing whether boosting 5'-nucleotidase activities (cNIA, cN1B and cNII) in AK2 -/- HSPCs can decrease AMP levels and rescue the neutrophil maturation defect. As purine metabolic defects are associated with diverse immune and non-immune abnormalities, further understanding of how purine metabolism governs differentiation of human HSPCs will enable us to develop novel therapeutic strategies for RD and other purine disorders. Disclosures Porteus: CRISPR Therapeutics: Current equity holder in publicly-traded company; Allogene Therapeutics: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Versant Ventures: Consultancy; Ziopharm: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Graphite Bio: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Morrison: Garuda Therapeutics: Other: founder and SAB member ; Kojin Therapeutics: Other: SAB member ; Frequency Therapeutics: Other: SAB member ; Ona Terapeutics: Other: SAB member ; Protein Fluidics: Other: SAB member .


2021 ◽  
Author(s):  
Gamze Kuser Abali ◽  
Fumihito Noguchi ◽  
Pacman Szeto ◽  
Youfang Zhang ◽  
Cheng Huang ◽  
...  

Although conventional EZH2 enzymatic inhibitors are effective in various tumors, we demonstrated that B-Raf mutant melanoma cells do not respond effectively to both GSK126 and EPZ6438 when used in physiological levels in vitro. In addition, the EZH2 knockdown phenotype (lowered tumorigenesis and metastasis) was rescued by both wild-type EZH2 and methyl-transferase-deficient H689A mutant and cytosolic nuclear localization signal (NLS) deletion-mutant EZH2 overexpression in vitro and in vivo. This clearly indicates a methyl-transferase-independent role of cytosolic EZH2 in melanoma cell tumorigenicity and metastasis. To identify potential methyltransferase-independent mechanisms of EZH2 in melanoma, we performed Liquid Chromatography-Mass Spectrometry (LC-MS) on EZH2 immunoprecipitates from multiple melanoma cell lines and human PDXs. We identified an interacting protein called inosine monophosphate dehydrogenase 2 (IMPDH2), the rate-limiting enzyme in de-novo GTP synthesis. Biochemical studies showed that N-terminal EED-binding domain of cytosolic EZH2 interacts with CBS domain of IMPDH2 in a PRC2- and methylation-independent manner. EZH2 silencing reduces cellular GTP levels by impeding IMPDH2 tetramerization, stability and its cytosolic localization. On the other hand, guanosine, which replenishes GTP, stabilized ribosomal biogenesis and actomyosin contractility and thereby, promoted invasive and clonogenic cell states even in EZH2 silenced cells. In human melanoma clinical samples, high cytosolic EZH2 and IMPDH2 expressions are directly correlated with the nucleolar enlargement in the metastatic melanomas. In addition, IMPDH2 silencing reduces EZH2 overexpression induced proliferation and invasion phenotype that is reversed later by guanosine addition. In addition, EZH2-IMPDH2 complex was also validated across a range of cancers. These results point to a methyltransferase-independent but GTP-dependent non-canonical mechanism of EZH2 regulation in various cancers. Sappanone A (SA), that is shown to inhibit IMPDH2/EZH2 interaction and thereby IMPDH2 tetrametization, is anti-tumorigenic across a range of cancers including melanoma, but not in normal melanocytes or bone marrow progenitor cells. In summary, EZH2 contributes to melanoma tumorigenicity and invasion by upregulating ribosomal biogenesis and actomyosin contractility via IMPDH2-induced GTP synthesis.


Blood ◽  
2021 ◽  
Author(s):  
Christopher P Mill ◽  
Warren Fiskus ◽  
Courtney D DiNardo ◽  
Christine Birdwell ◽  
John A Davis ◽  
...  

Majority of RUNX1 mutations in AML are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared to AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1 and c-Myc. Compared to AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. HHT treatment repressed enhancers and their BRD4 occupancy, as well as was associated with reduced levels of c-Myc, c-Myb, MCL1 and Bcl-xL. Consistent with this, co-treatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared to each agent alone, co-treatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.


2021 ◽  
Vol 141 (10) ◽  
pp. S176
Author(s):  
T. Phan ◽  
P. Maity ◽  
C. Ludwig ◽  
L. Streit ◽  
J. Michaelis ◽  
...  

2021 ◽  
Author(s):  
Lvhao Zhang ◽  
Xiaojun Wang ◽  
Wangyin Yu ◽  
Tian Yang ◽  
Xiang Zhou ◽  
...  

Abstract Filamentous fungi in the order Entomophthorales are the main natural regulators of insect populations. Conidiation is crucial for entomopathogenic fungi to explore host resources due to the multifunction of conidia such as growth, infection, and stress resistance; however, the molecular mechanisms underlying the conidial functions in Entomophthorales is unknown. This study analyzed the differentially expressed transcriptomic patterns in three conidiation stages (pre-conidiation, emerging conidiation, and post-conidiation, respectively) of the aphid-obligate pathogen Conidiobolus obscurus (Entomophthoromycotina). The emerging conidiation stage vs. pre- or post- conidiation stage had 3,091 and 3,235 differentially expressed genes (DEGs), respectively, wherein 2,915 upregulated DEGs were putatively related to the conidial functions. A weighted gene co-expression network analysis showed that 772 hub genes in conidiation, which were related to cuticular component degradation, oxidative phosphorylation, ribosomal biogenesis, cell wall/membrane biosynthesis, MAPK signaling pathway, secondary metabolite biosynthesis, and other metabolic processes. This implied that the conidia of Entomophthorales have abundant transcripts with various functions to favor a quick response to the surrounding environment and effectively explore the host resources.


2021 ◽  
Author(s):  
Juhi Singh ◽  
Rahul Raina ◽  
Kutti R. Vinothkumar ◽  
Ruchi Anand

AbstractMethylation of specific nucleotides is integral for ribosomal biogenesis and serves as a common way to confer antibiotic resistance by pathogenic bacteria. Here, by determining the high-resolution structure of 30S-KsgA by cryo-EM, a state was captured, where KsgA juxtaposes between helices h44 and h45, separating them, thereby enabling remodeling of the surrounded rRNA and allowing the cognate site to enter the methylation pocket. With the structure as a guide, factors that direct the enzyme to its cognate site with high fidelity were unearthed by creating several mutant versions of the ribosomes, where interacting bases in the catalytic helix h45 and surrounding helices h44, h24, and h27 were mutated and evaluated for their methylation efficiency. The biochemical studies delineated specificity hotspots that enable KsgA to achieve an induced fit. This study enables the identification of distal exclusive allosteric pocket and other divergent structural elements in each rMTase, which can be exploited to develop strategies to reverse methylation, mediated drug resistance.


Sign in / Sign up

Export Citation Format

Share Document