translation apparatus
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 2)

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3239
Author(s):  
Zaur M. Kachaev ◽  
Sergey D. Ivashchenko ◽  
Eugene N. Kozlov ◽  
Lyubov A. Lebedeva ◽  
Yulii V. Shidlovskii

Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.


2021 ◽  
Author(s):  
Isabella Tolle ◽  
Stefan Oehm ◽  
Michael Georg Hoesl ◽  
Christin Treiber-Kleinke ◽  
Lauri Peil ◽  
...  

ABSTRACTBillions of years of evolution have produced only slight variations in the standard genetic code, and the number and identity of proteinogenic amino acids have remained mostly consistent throughout all three domains of life. These observations suggest a certain rigidity of the genetic code and prompt musings as to the origin and evolution of the code. Here we conducted an adaptive laboratory evolution (ALE) to push the limits of the code restriction, by evolving Escherichia coli to fully replace tryptophan, thought to be the latest addition to the genetic code, with the analog L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa). We identified an overshooting of the stress response system to be the main inhibiting factor for limiting ancestral growth upon exposure to β-(thieno[3,2-b]pyrrole ([3,2]Tp), a metabolic precursor of [3,2]Tpa, and Trp limitation. During the ALE, E. coli was able to “calm down” its stress response machinery, thereby restoring growth. In particular, the inactivation of RpoS itself, the master regulon of the general stress response, was a key event during the adaptation. Knocking out the rpoS gene in the ancestral background independent of other changes conferred growth on [3,2]Tp. Our results add additional evidence that frozen regulatory constraints rather than a rigid protein translation apparatus are Life’s gatekeepers of the canonical amino acid repertoire. This information will not only enable us to design enhanced synthetic amino acid incorporation systems but may also shed light on a general biological mechanism trapping organismal configurations in a status quo.SIGNIFICANCE STATEMENTThe (apparent) rigidity of the genetic code, as well as its universality, have long since ushered explorations into expanding the code with synthetic, new-to-nature building blocks and testing its boundaries. While nowadays even proteome-wide incorporation of synthetic amino acids has been reported on several occasions1–3, little is known about the underlying mechanisms.We here report ALE with auxotrophic E. coli that yielded successful proteome-wide replacement of Trp by its synthetic analog [3,2]Tpa accompanied with the selection for loss of RpoS4 function. Such laboratory domestication of bacteria by the acquisition of rpoS mitigation mutations is beneficial not only to overcome the stress of nutrient (Trp) starvation but also to evolve the paths to use environmental xenobiotics (e.g. [3,2]Tp) as essential nutrients for growth.We pose that regulatory constraints rather than a rigid and conserved protein translation apparatus are Life’s gatekeepers of the canonical amino acid repertoire (at least where close structural analogs are concerned). Our findings contribute a step towards understanding possible environmental causes of genetic changes and their relationship to evolution.Our evolved strain affords a platform for homogenous protein labeling with [3,2]Tpa as well as for the production of biomolecules5, which are challenging to synthesize chemically. Top-down synthetic biology will also benefit greatly from breaking through the boundaries of the frozen bacterial genetic code, as this will enable us to begin creating synthetic cells capable to utilize an expanded range of substrates essential for life.


2021 ◽  
Author(s):  
Sarah Aherfi ◽  
Djamal Brahim Belhaouari ◽  
Lucile Pinault ◽  
Jean-Pierre Baudoin ◽  
Philippe Decloquement ◽  
...  

AbstractThe discovery of Acanthamoeba polyphaga Mimivirus, the first isolated giant virus of amoeba, challenged the historical hallmarks defining a virus. Giant virion sizes are known to reach up to 2.3 µm, making them visible by optical microscopy. Their large genome sizes of up to 2.5 Mb can encode proteins involved in the translation apparatus. We have investigated possible energy production in Pandoravirus massiliensis. Mitochondrial membrane markers allowed for the detection of a membrane potential in purified virions and this was enhanced by a regulator of the tricarboxylic acid cycle but abolished by the use of a depolarizing agent. Bioinformatics was employed to identify enzymes involved in virion proton gradient generation and this approach revealed that eight putative P. massiliensis proteins exhibited low sequence identities with known cellular enzymes involved in the universal tricarboxylic acid cycle. Further, all eight viral genes were transcribed during replication. The product of one of these genes, ORF132, was cloned and expressed in Escherichia coli, and shown to function as an isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle. Our findings show for the first time that a membrane potential can exist in Pandoraviruses, and this may be related to tricarboxylic acid cycle. The presence of a proton gradient in P. massiliensis makes this virus a form of life for which it is legitimate to ask the question “what is a virus?”.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Laura Plassart ◽  
Ramtin Shayan ◽  
Christian Montellese ◽  
Dana Rinaldi ◽  
Natacha Larburu ◽  
...  

Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3' end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-EM analysis of late human pre-40S particles purified using a catalytically-inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3' end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.


2021 ◽  
pp. 136787792097971
Author(s):  
Seryun Lee

Increasingly, YouTubers are translating their self-produced videos in order to reach out to a global viewership. Those YouTubers’ translations often incorporate innovative practices that prioritise displaying affinity with their audience. Non-representational subtitling is one such translation apparatus. It does not seek to reproduce speech in another language accurately but contains additional information that is not otherwise included in the content. I examine non-representational subtitles deployed in culture-brokering YouTube vlogs, as well as viewers’ reactions to those subtitles. The key argument of this article is that non-representational subtitling can be utilised as a means both of expressing YouTubers’ voices outside of filmed space during the translating process and of manipulating ways to address viewers’ different language constituencies. I also argue that translation-driven communities are interactive transnational networks in which viewers develop a sense of community by amplifying translation-mediated information, suggesting alternative translations, and expressing their feelings.


2020 ◽  
pp. jbc.REV120.011985
Author(s):  
Sunil Shetty ◽  
Umesh Varshney

Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance, and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids like methionine, and biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ellen G. J. Ripmeester ◽  
Marjolein M. J. Caron ◽  
G. G. H. van den Akker ◽  
Don A. M. Surtel ◽  
Andy Cremers ◽  
...  

2020 ◽  
Author(s):  
Laura Plassart ◽  
Ramtin Shayan ◽  
Christian Montellese ◽  
Dana Rinaldi ◽  
Natacha Larburu ◽  
...  

Preventing premature interaction of preribosomes with the translation apparatus is essential to translation accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3′ end, is safeguarded by protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-EM analysis of late human pre-40S particles purified using a catalytically-inactive form of ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATPloaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3′ end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.


Mitochondrion ◽  
2020 ◽  
Vol 53 ◽  
pp. 30-37 ◽  
Author(s):  
Florent Waltz ◽  
Nicolas Corre ◽  
Yaser Hashem ◽  
Philippe Giegé

2020 ◽  
Vol 8 (1) ◽  
pp. 9-15
Author(s):  
Amah Fatimah ◽  
Yusro Edy N.

ABSTRACT   Manuscript fiber Pangrembag Ewah-ewahan Rarantaman Arta ing Taun 1925 Karembag ing Wulan Dhesember 1924 is one of the collections of manuscripts of state documents on the financial budget that is stored in the Museum Radya Pustaka Surakarta. Manuscript Pangrembag Ewah-ewahan Rarantaman Arta ing Taun 1925 Karembag ing Wulan Dhesember 1924 has RP number 129-1 and is 22 pages. This manuscript is written using Javanese krama inggil language with inserted Javanese-Dutch absorption language. The purpose of this study presents the text ranging from the description of manuscripts, transliteration, text edits and the apparatus of criticism and translation. Research data is manuscripts Pangrembag Ewah-ewahan Rarantaman Arta ing Taun 1925Karembag ing Wulan Dhesember 1924. The method of research is a single standard edition script method. As for the translation of the text using free translation, so that the results of the translation easily understood by the reader. The results of this research is a valid edition of the text according to philological studies. There is also a critical and translation apparatus in Indonesian form.   Key words : Philology, Rarantaman Arta, Text.


Sign in / Sign up

Export Citation Format

Share Document