Review of (2018): Un(intended) Language Planning in a Globalising World: Multiple Levels of Players at Work

Author(s):  
Kinga Kozminska
Author(s):  
Marylyn Bennett-Lilley ◽  
Thomas T.H. Fu ◽  
David D. Yin ◽  
R. Allen Bowling

Chemical Vapor Deposition (CVD) tungsten metallization is used to increase VLSI device performance due to its low resistivity, and improved reliability over other metallization schemes. Because of its conformal nature as a blanket film, CVD-W has been adapted to multiple levels of metal which increases circuit density. It has been used to fabricate 16 MBIT DRAM technology in a manufacturing environment, and is the metallization for 64 MBIT DRAM technology currently under development. In this work, we investigate some sources of contamination. One possible source of contamination is impurities in the feed tungsten hexafluoride (WF6) gas. Another is particle generation from the various reactor components. Another generation source is homogeneous particle generation of particles from the WF6 gas itself. The purpose of this work is to investigate and analyze CVD-W process-generated particles, and establish a particle characterization methodology.


2011 ◽  
Author(s):  
Carly S. Bruck ◽  
Rita Williams ◽  
Tripp Welch ◽  
Phil Warden ◽  
Patrick K. Hyland

2003 ◽  
Author(s):  
Chera L. Haworth ◽  
Andrea F. Snell ◽  
Daniel J. Svyantek ◽  
Gary A. Kustis
Keyword(s):  

2007 ◽  
Author(s):  
Amy Perfors ◽  
Charles Kemp ◽  
Elizabeth Wonnacott ◽  
Joshua B. Tenenbaum

2014 ◽  
Author(s):  
Ruth Kimchi ◽  
Yossef Pirkner
Keyword(s):  

2020 ◽  
Vol 36 (06) ◽  
pp. 722-726
Author(s):  
Adam Jacobson ◽  
Oriana Cohen

AbstractAdvances in free flap reconstruction of complex head and neck defects have allowed for improved outcomes in the management of head and neck cancer. Technical refinements have decreased flap loss rate to less than 4%. However, the potential for flap failure exists at multiple levels, ranging from flap harvest and inset to pedicle lay and postoperative patient and positioning factors. While conventional methods of free flap monitoring (reliant on physical examination) remain the most frequently used, additional adjunctive methods have been developed. Herein we describe the various modalities of both invasive and noninvasive free flap monitoring available to date. Still, further prospective studies are needed to compare the various invasive and noninvasive technologies and to propel innovations to support the early recognition of vascular compromise with the goal of even greater rates of flap salvage.


Sign in / Sign up

Export Citation Format

Share Document