Patterns and drivers of soil carbon stocks and isotopic composition in secondary tropical dry forests of Costa Rica.

Author(s):  
J. S. Powers ◽  
D. W. P. Manning ◽  
J. M. Becknell
2020 ◽  
Vol 33 (3) ◽  
pp. 735-745
Author(s):  
JOSÉ FRÉDSON BEZERRA LOPES ◽  
EUNICE MAIA DE ANDRADE ◽  
ERICH CELESTINO BRAGA PEREIRA ◽  
DIEGO ANTUNES CAMPOS ◽  
DEODATO DO NASCIMENTO AQUINO

ABSTRACT Management of tropical dry forests in Brazil expanded 450% in the two latest decades; but little is known about the dynamics of these areas. Thus, the objective of this work was to evaluate if the recovery of mean original biomass stocks (MOBS) is a consistent criterion to define cut cycles in a managed forest for charcoal production, and determine the remaining biomass and its contribution to soil carbon stocks. The study was conducted at the Ramalhete Settlement, in General Sampaio, CE, Brazil, in 2018. The explorable shrubby-arboreous biomass (ESAB) and the ESAB mean annual increases (ESAB -MAI) were determined in five areas subjected to clearcutting after 3, 5, 8, 11, and 15 years, and in a preservation area with 40 years of regeneration. Each area was divided into seven plots (20 × 20 m), totaling 42 plots. The ESAB of the plots were compared and the remaining biomass (branches, stumps, and litterfall) in a recently explored area was calculated and converted into organic carbon. The remaining biomass of branches had higher contribution to soil carbon stocks, followed by the litterfall, and stumps. The carbon stocks of the branch component were 3.4-fold higher than those of the litterfall. The recovery of the MOBS of an area after clearcutting should not be used as a criterion to define the cut cycle, since these original carbon stocks do not represent the maximum ESAB production possible in the area; the biodiversity and amount of ESAB in the classes of larger diameter are more adequate criteria.


2016 ◽  
Vol 67 (1) ◽  
pp. 61-69
Author(s):  
M Forouzangohar ◽  
R Setia ◽  
DD Wallace ◽  
CR Nitschke ◽  
LT Bennett

2021 ◽  
Vol 446 ◽  
pp. 109500
Author(s):  
Gaurav Mishra ◽  
Avishek Sarkar ◽  
Krishna Giri ◽  
Arun Jyoti Nath ◽  
Rattan Lal ◽  
...  

2016 ◽  
Vol 158 ◽  
pp. 186
Author(s):  
Martin Gauder ◽  
Norbert Billen ◽  
Sabine Zikeli ◽  
Moritz Laub ◽  
Simone Graeff-Hönninger ◽  
...  

2018 ◽  
Vol 177 ◽  
pp. 97-104 ◽  
Author(s):  
Émilie Maillard ◽  
Brian G. McConkey ◽  
Mervin St. Luce ◽  
Denis A. Angers ◽  
Jianling Fan

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lawrence H. Tanner ◽  
Megan T. Wilckens ◽  
Morgan A. Nivison ◽  
Katherine M. Johnson

We measured carbon stocks at two forest reserves in the cloud forest region of Monteverde, comparing cleared land, experimental secondary forest plots, and mature forest at each location to assess the effectiveness of reforestation in sequestering biomass and soil carbon. The biomass carbon stock measured in the mature forest at the Monteverde Institute is similar to other measurements of mature tropical montane forest biomass carbon in Costa Rica. Local historical records and the distribution of large trees suggest a mature forest age of greater than 80 years. The forest at La Calandria lacks historical documentation, and dendrochronological dating is not applicable. However, based on the differences in tree size, above-ground biomass carbon, and soil carbon between the Monteverde Institute and La Calandria sites, we estimate an age difference of at least 30 years of the mature forests. Experimental secondary forest plots at both sites have accumulated biomass at lower than expected rates, suggesting local limiting factors, such as nutrient limitation. We find that soil carbon content is primarily a function of time and that altitudinal differences between the study sites do not play a role.


2019 ◽  
Vol 221 ◽  
pp. 707-721 ◽  
Author(s):  
Vaughn Smith ◽  
Carlos Portillo-Quintero ◽  
Arturo Sanchez-Azofeifa ◽  
Jose L. Hernandez-Stefanoni

SOIL ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Jonathan Sanderman ◽  
Courtney Creamer ◽  
W. Troy Baisden ◽  
Mark Farrell ◽  
Stewart Fallon

Abstract. Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha−1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity – twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.


2018 ◽  
pp. 301-322 ◽  
Author(s):  
Tarik Mitran ◽  
Rattan Lal ◽  
Umakant Mishra ◽  
Ram Swaroop Meena ◽  
T. Ravisankar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document