Three-dimensional Analysis of Eye Movements during Off Vertical Axis Rotation in Patients with Unilateral Labyrinthine Loss

2001 ◽  
Vol 121 (2) ◽  
pp. 225-228 ◽  
Author(s):  
Eriko Kamura, Toshiaki Yagi
2006 ◽  
Vol 65 (6) ◽  
pp. 429-439 ◽  
Author(s):  
Keisuke Kushiro ◽  
Jun Maruta

1995 ◽  
Vol 115 (5) ◽  
pp. 603-609 ◽  
Author(s):  
Gilles Clement ◽  
Christian Darlot ◽  
Anna Petropoulos ◽  
Alain Berthoz

2005 ◽  
Vol 32 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Toshiaki Yagi ◽  
Yasuo Koizumi ◽  
Mio Aoyagi ◽  
Maki Kimura ◽  
Kazuki Sugizaki

1994 ◽  
Vol 72 (1) ◽  
pp. 31-46 ◽  
Author(s):  
J. Van der Steen ◽  
J. I. Simpson ◽  
J. Tan

1. The three -dimensional, binocular eye movements evoked by electrical microstimulation of the cerebellar flocculus of alert, pigmented rabbits were recorded using the scleral search coil technique. The components of these eye movements were obtained in reference to an orthogonal coordinate system consisting of a vertical axis and two horizontal axes at 45 degrees and 135 degrees azimuth. The azimuth coordinate was taken to increase to both sides from the 0 degrees reference in the direction of the nose. 2. Eye movements were evoked most readily by stimulation (0.2 -ms pulses at 200 Hz for 1 s, intensity < or = 20 microA) at loci in the deep granular layer and the white matter. They consisted of slow (5–20 deg/s) movements. The responses were either binocular, with the eye ipsilateral to the stimulated flocculus usually having the larger amplitude, or were monocular, in which case they were restricted to the ipsilateral eye. 3. The evoked responses were classified according to the combination of the largest measured component of rotation for the two eyes and its sense of rotation (clockwise, CW, or counterclockwise, CCW). Seventy -eight percent of the evoked eye movements could be placed in one of two classes. For one of these classes the largest response component was a short -latency abduction of the ipsilateral eye about its vertical axis (19%), whereas for the other class (59%), the largest response component was a short -latency CCW rotation of the ipsilateral (left) eye about its 135 degrees axis. This response was frequently (50%) accompanied by a smaller short -latency CW rotation of the contralateral (right) eye about its 45 degrees axis. 4. The two main classes of three -dimensional eye movements are associated differentially with anatomically distinguishable compartments that are revealed by acetylcholinesterase histochemistry. Of the five anatomically distinguishable compartments in the floccular white matter, three are predominant. The middle of these three compartments is associated with the vertical axis class of movements, whereas the two adjacent compartments are associated with the 135 degrees class of eye movements. The eye movement relation of the other two, smaller compartments, was not determined. 5. The spatial orientation of the rotation axes of the two main classes of evoked eye movements closely corresponds to that of the preferred axes of the visual climbing fiber input to the flocculus. This suggests that both are organized in a similar coordinate system.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 88 (5) ◽  
pp. 2445-2462 ◽  
Author(s):  
Keisuke Kushiro ◽  
Mingjia Dai ◽  
Mikhail Kunin ◽  
Sergei B. Yakushin ◽  
Bernard Cohen ◽  
...  

Nystagmus induced by off-vertical axis rotation (OVAR) about a head yaw axis is composed of a yaw bias velocity and modulations in eye position and velocity as the head changes orientation relative to gravity. The bias velocity is dependent on the tilt of the rotational axis relative to gravity and angular head velocity. For axis tilts <15°, bias velocities increased monotonically with increases in the magnitude of the projected gravity vector onto the horizontal plane of the head. For tilts of 15–90°, bias velocity was independent of tilt angle, increasing linearly as a function of head velocity with gains of 0.7–0.8, up to the saturation level of velocity storage. Asymmetries in OVAR bias velocity and asymmetries in the dominant time constant of the angular vestibuloocular reflex (aVOR) covaried and both were reduced by administration of baclofen, a GABAB agonist. Modulations in pitch and roll eye positions were in phase with nose-down and side-down head positions, respectively. Changes in roll eye position were produced mainly by slow movements, whereas vertical eye position changes were characterized by slow eye movements and saccades. Oscillations in vertical and roll eye velocities led their respective position changes by ≈90°, close to an ideal differentiation, suggesting that these modulations were due to activation of the orienting component of the linear vestibuloocular reflex (lVOR). The beating field of the horizontal nystagmus shifted the eyes 6.3°/ g toward gravity in side down position, similar to the deviations observed during static roll tilt (7.0°/ g). This demonstrates that the eyes also orient to gravity in yaw. Phases of horizontal eye velocity clustered ∼180° relative to the modulation in beating field and were not simply differentiations of changes in eye position. Contributions of orientating and compensatory components of the lVOR to the modulation of eye position and velocity were modeled using three components: a novel direct otolith-oculomotor orientation, orientation-based velocity modulation, and changes in velocity storage time constants with head position re gravity. Time constants were obtained from optokinetic after-nystagmus, a direct representation of velocity storage. When the orienting lVOR was combined with models of the compensatory lVOR and velocity estimator from sequential otolith activation to generate the bias component, the model accurately predicted eye position and velocity in three dimensions. These data support the postulates that OVAR generates compensatory eye velocity through activation of velocity storage and that oscillatory components arise predominantly through lVOR orientation mechanisms.


Odontology ◽  
2004 ◽  
Vol 92 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Hirotoshi Baba ◽  
Shohachi Shimooka

Sign in / Sign up

Export Citation Format

Share Document