Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three-dimensional analysis (Part II: For predicting flow field and performance)

Energy ◽  
2016 ◽  
Vol 104 ◽  
pp. 295-307 ◽  
Author(s):  
Qing'an Li ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
Junsuke Murata ◽  
Toshiaki Kawabata ◽  
...  
2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Vincenzo Dossena ◽  
Giacomo Persico ◽  
Berardo Paradiso ◽  
Lorenzo Battisti ◽  
Sergio Dell'Anna ◽  
...  

This paper presents the results of a wide experimental study on an H-type vertical axis wind turbine (VAWT) carried out at the Politecnico di Milano. The experiments were carried out in a large-scale wind tunnel, where wind turbines for microgeneration can be tested in real-scale conditions. Integral torque and thrust measurements were performed, as well as detailed aerodynamic measurements to characterize the flow field generated by the turbine downstream of the rotor. The machine was tested in both a confined (closed chamber) and unconfined (open chamber) environment, to highlight the effect of wind tunnel blockage on the aerodynamics and performance of the VAWT under investigation. The experimental results, compared with the blockage correlations presently available, suggest that specific correction models should be developed for VAWTs. The experimental thrust and power curves of the turbine, derived from integral measurements, exhibit the expected trends with a peak power coefficient of about 0.28 at tip-speed ratio equal to 2.5. Flow measurements, performed in three conditions for tip speed ratio equal to 1.5, 2.5, and 3.5, show the fully three-dimensional character of the wake, especially in the tip region where a nonsymmetrical wake and tip vortex are found. The unsteady evolution of the velocity and turbulence fields further highlights the effect of aerodynamic loading on the wake unsteadiness, showing the time-dependent nature of the tip vortex and the onset of dynamic stall for tip speed ratio lower than 2.


2016 ◽  
Vol 57 (3) ◽  
Author(s):  
Kevin J. Ryan ◽  
Filippo Coletti ◽  
Christopher J. Elkins ◽  
John O. Dabiri ◽  
John K. Eaton

Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
B. Paradiso ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were applied to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results evidence that the presently available theoretical correction models does not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used to explain the different flow features with respect to horizontal axis wind turbines.


2020 ◽  
Vol 1618 ◽  
pp. 042005
Author(s):  
Pradip Zamre ◽  
Amgad Dessoky ◽  
Maximilian von der Grün ◽  
Thorsten Lutz ◽  
Ewald Krämer

Author(s):  
M. Salman Siddiqui ◽  
Naveed Durrani ◽  
Imran Akhtar

A computational fluid dynamic (CFD) analysis is carried out to investigate the effects of struts and central hub in 3D on the overall performance prediction of a three dimensional vertical axis wind turbine (VAWT) with three Darrieus H-type blades. The VAWT has the outer diameter of 2.5m and finite unit length height with expected output of 2KVA. This type of small VAWT are expected to perform better on roof tops of the built-up urban area. The analysis is carried out using sliding mesh concept in commercial CFD software ‘Ansys Fluent 13’. It is observed that the struts and central hub assembly induce additional drag and generate strong vortices which caused a substantial decrease in the performance parameters of the turbine. The numerical simulation are carried out over a three dimensional VAWT with and without struts and central hub. It is found that both the cases show a similar trend of the torque ripple for any one blade while for the upstream path, on the contrary the blades experience a drop in performance from 220° to 360° due to the struts and central hub assembly. A detailed comparative analysis between both the cases is made over the TSR values range from 1.5 to 4.5. At TSR = 1.5, the performance coefficient of the cases with and without struts and central hub are same. However, for the case of struts and central hub, TSR 4 and above show negative values of power coefficients.


2010 ◽  
Vol 35 (2) ◽  
pp. 412-422 ◽  
Author(s):  
Robert Howell ◽  
Ning Qin ◽  
Jonathan Edwards ◽  
Naveed Durrani

Energy ◽  
2017 ◽  
Vol 121 ◽  
pp. 1-9 ◽  
Author(s):  
Qing'an Li ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
Kento Shimizu ◽  
Tatsuhiko Ogasawara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document