velocity storage
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 21)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 20 (3) ◽  
pp. 81-92
Author(s):  
Jeong-Yoon Choi

The velocity-storage circuit comprised of bilateral vestibular nucleus complexes, commissural fiber, and nodulus and uvula functions in refining the raw vestibular signal to estimate rotational velocity, gravity direction, and inertia. In this review, we pursued the functional significance of this velocity-storage circuit and how this physiologic knowledge could help us understand the clinical symptoms and signs of patients with vestibular disorders.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mónica Alcantara-Thome ◽  
José A. Miguel-Puga ◽  
Kathrine Jauregui-Renaud

Few studies have evaluated the influence of idiosyncrasies that may influence the judgment of space-time orientation after passive motion. We designed a study to assess the influence of anxiety/depression (which may distort time perception), motion sickness susceptibility (which has been related to vestibular function, disorientation, and to the velocity storage mechanism), and personal habits on the ability to update orientation, after passive rotations in the horizontal plane. Eighty-one healthy adults (22–64 years old) accepted to participate. After they completed an in-house general health/habits questionnaire, the short Motion Sickness Susceptibility Questionnaire, the Hospital Anxiety and Depression Scale (HADS), the Pittsburgh Sleep Quality Index, and the short International Physical Activity Questionnaire, they were exposed to 10 manually driven whole-body rotations (45°, 90°, or 135°), in a square room, with distinctive features on the walls, while seated in the normal upright position, unrestrained, with noise-attenuating headphones and blindfolded. After each rotation, they were asked to report which wall or corner they were facing. To calculate the error of estimation of orientation, the perceived rotation was subtracted from the actual rotation. Multivariate analysis showed that the estimation error of the first rotation was strongly related to the results of the orientation test. The magnitude and the frequency of estimation errors of orientation were independently related to HADS anxiety sub-score and to adult motion sickness susceptibility, with no influence of age, but a contribution from the interaction of the use of spectacles, the quality of sleep and sex. The results suggest that idiosyncrasies may contribute to the space-time estimation of passive self-motion, with influence from emotional traits, adult motion sickness susceptibility, experience, and possibly sleep quality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jan Gygli ◽  
Fausto Romano ◽  
Christopher J. Bockisch ◽  
Nina Feddermann-Demont ◽  
Dominik Straumann ◽  
...  

Observing a rotating visual pattern covering a large portion of the visual field induces optokinetic nystagmus (OKN). If the lights are suddenly switched off, optokinetic afternystagmus (OKAN) occurs. OKAN is hypothesized to originate in the velocity storage mechanism (VSM), a central processing network involved in multi-sensory integration. During a sustained visual rotation, the VSM builds up a velocity signal. After the lights are turned off, the VSM discharges slowly, with OKAN as the neurophysiological correlate. It has been reported that the initial afternystagmus in the direction of the preceding stimulus (OKAN-I) can be followed by a reversed one (OKAN-II), which increases with stimulus duration up to 15 min. In 11 healthy adults, we investigated OKAN following optokinetic stimulus lasting 30 s, 3-, 5-, and 10-min. Analysis of slow-phase cumulative eye position and velocity found OKAN-II in only 5/11 participants. Those participants presented it in over 70% of their trials with longer durations, but only in 10% of their 30 s trials. While this confirms that OKAN-II manifests predominantly after sustained stimuli, it suggests that its occurrence is subject-specific. We also did not observe further increases with stimulus duration. Conversely, OKAN-II onset occurred later as stimulus duration increased (p = 0.02), while OKAN-II occurrence and peak velocity did not differ between the three longest stimuli. Previous studies on OKAN-I, used negative saturation models to account for OKAN-II. As these approaches have no foundation in the OKAN-II literature, we evaluated if a simplified version of a rigorous model of OKAN adaptation could be used in humans. Slow-phase velocity following the trials with 3-, 5-, and 10-min stimuli was fitted with a sum of two decreasing exponential functions with opposite signs (one for OKAN-I and one for OKAN-II). The model assumes separate mechanisms for OKAN-I, representing VSM discharge, and OKAN-II, described as a slower adaptation phenomenon. Although the fit was qualitatively imperfect, this is not surprising given the limited reliability of OKAN in humans. The estimated adaptation time constant seems comparable to the one describing the reversal of the vestibulo-ocular reflex during sustained rotation, suggesting a possible shared adaptive mechanism.


Author(s):  
Tugrul Irmak ◽  
Ksander N. de Winkel ◽  
Daan M. Pool ◽  
Heinrich H. Bülthoff ◽  
Riender Happee

AbstractPrevious literature suggests a relationship between individual characteristics of motion perception and the peak frequency of motion sickness sensitivity. Here, we used well-established paradigms to relate motion perception and motion sickness on an individual level. We recruited 23 participants to complete a two-part experiment. In the first part, we determined individual velocity storage time constants from perceived rotation in response to Earth Vertical Axis Rotation (EVAR) and subjective vertical time constants from perceived tilt in response to centrifugation. The cross-over frequency for resolution of the gravito-inertial ambiguity was derived from our data using the Multi Sensory Observer Model (MSOM). In the second part of the experiment, we determined individual motion sickness frequency responses. Participants were exposed to 30-minute sinusoidal fore-aft motions at frequencies of 0.15, 0.2, 0.3, 0.4 and 0.5 Hz, with a peak amplitude of 2 m/s2 in five separate sessions, approximately 1 week apart. Sickness responses were recorded using both the MIsery SCale (MISC) with 30 s intervals, and the Motion Sickness Assessment Questionnaire (MSAQ) at the end of the motion exposure. The average velocity storage and subjective vertical time constants were 17.2 s (STD = 6.8 s) and 9.2 s (STD = 7.17 s). The average cross-over frequency was 0.21 Hz (STD = 0.10 Hz). At the group level, there was no significant effect of frequency on motion sickness. However, considerable individual variability was observed in frequency sensitivities, with some participants being particularly sensitive to the lowest frequencies, whereas others were most sensitive to intermediate or higher frequencies. The frequency of peak sensitivity did not correlate with the velocity storage time constant (r = 0.32, p = 0.26) or the subjective vertical time constant (r = − 0.37, p = 0.29). Our prediction of a significant correlation between cross-over frequency and frequency sensitivity was not confirmed (r = 0.26, p = 0.44). However, we did observe a strong positive correlation between the subjective vertical time constant and general motion sickness sensitivity (r = 0.74, p = 0.0006). We conclude that frequency sensitivity is best considered a property unique to the individual. This has important consequences for existing models of motion sickness, which were fitted to group averaged sensitivities. The correlation between the subjective vertical time constant and motion sickness sensitivity supports the importance of verticality perception during exposure to translational sickness stimuli.


2021 ◽  
Vol 10 (5) ◽  
pp. 916
Author(s):  
Hyung Lee ◽  
Hyun Ah Kim

Background: There have been several studies about head-shaking nystagmus (HSN) in posterior canal benign paroxysmal positional vertigo (PC-BPPV). The purpose of the study was to determine the characteristics of HSN and its relationship with head-bending nystagmus (HBN) and lying-down nystagmus (LDN) in PC-BPPV and to suggest a possible pathomechanism of HSN based on these findings. Methods: During the study period, 992 patients with BPPV were initially enrolled. After excluding horizontal or anterior canal BPPV, multiple canals involvement, secondary causes of BPPV, identifiable central nervous system (CNS) disorders, unidentifiable lesion side, or poor cooperation, 240 patients with unilateral PC-BPPV were enrolled. We assessed the frequency, pattern of HSN, and correlation with other induced nystagmus after positional maneuvers such as head bending, lying down, head-turning, and Dix-Hallpike test. Results: Approximately 32% of patients with PC-BPPV showed HSN. Among patients with HSN, approximately 61% of patients showed predominantly downbeat nystagmus, and two-third of them had a torsional component. The torsional component was mostly directed to the contralesional side. Horizontal nystagmus (36%) and upbeat nystagmus (3%) were also observed after head-shaking in PC-BPPV. The presence of HSN was significantly correlated with that of HBN in PC-BPPV (p = 0.00). The presence of a torsional component of HSN was also significantly correlated with that of HBN in PC- BPPV (p = 0.00). Discussion: Perverted HSN, a typical sign of central vestibulopathy, is common in posterior canal BPPV and related to HBN. For generating HSN in PC-BPPV, the otolithic movements related to the endolymph dynamics seem to be more important than the velocity storage mechanism.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hongkai Gao ◽  
Jingjing Wang ◽  
Yuzhong Yang ◽  
Xicai Pan ◽  
Yongjian Ding ◽  
...  

Permafrost extends 40% of the Qinghai-Tibet Plateau (QTP), a region which contains the headwaters of numerous major rivers in Asia. As an aquiclude, permafrost substantially controls surface runoff and its hydraulic connection with groundwater. The freeze–thaw cycle in the active layer significantly impacts soil water movement direction, velocity, storage capacity, and hydraulic conductivity. Under the accelerating warming on the QTP, permafrost degradation is drastically altering regional and even continental hydrological regimes, attracting the attention of hydrologists, climatologists, ecologists, engineers, and decision-makers. A systematic review of permafrost hydrological processes and modeling on the QTP is still lacking, however, leaving a number of knowledge gaps. In this review, we summarize the current understanding of permafrost hydrological processes and applications of some permafrost hydrological models of varying complexity at different scales on the QTP. We then discuss the current challenges and future opportunities, including observations and data, the understanding of processes, and model realism. The goal of this review is to provide a clear picture of where we are now and to describe future challenges and opportunities. We concluded that more efforts are needed to conduct long-term field measurements, employ more advanced observation technologies, and develop flexible and modular models to deepen our understanding of permafrost hydrological processes and to improve our ability to predict the future responses of permafrost hydrology to climate changes.


Author(s):  
Giovanni Bertolini ◽  
Fausto Romano ◽  
Dominik Straumann ◽  
Katharine Keller ◽  
Antonella Palla ◽  
...  

AbstractConcussed patients with chronic symptoms commonly report dizziness during exposure to environments with complex visual stimuli (e.g. supermarket aisles, busy crossroads). Such visual induced dizziness is well-known in patients with vestibular deficits, in whom it indicates an overreliance on visual cues in sensory integration. Considering that optokinetic after-nystagmus (OKAN) reflects the response of the central network integrating visual and vestibular self-motion signals (velocity storage network), we investigated OKAN in 71 patients [17 (23.9%) females, 30.36 ± 9.05 years old] who suffered from persistent symptoms after a concussion and presented clinical signs suggesting visual dependence. Data were retrospectively compared with 21 healthy individuals [13 (61.9%) females, 26.29 ± 10.00 years old]. The median values of the slow cumulative eye position and of the time constant of OKAN were significantly higher in patients than in healthy individuals (slow cumulative eye position: 124.15 ± 55.61° in patients and 77.87 ± 45.63° in healthy individuals—p = 0.012; time constant: 25.17 ± 10.27 s in patients and 13.95 ± 4.92 s in healthy individuals—p = 0.003). The receiving operating curve (ROC) estimated on the time constant had an overall area under the curve of 0.73. Analysis of the ROC suggests that a test measuring the OKAN time constant could obtain a sensitivity of 0.73 and specificity of 0.72 in determining the origin of the visual-related disturbances in those patients (threshold 16.6 s). In a subset of 43 patients who also performed the Sensory Organization Test (SOT), the proposed OKAN test was twice as sensitive as the SOT. This study suggests that concussed patients with persisting visual symptoms may have an underlying impairment of the velocity storage mechanism and that measuring the OKAN time constant can objectify such impairment.


Sign in / Sign up

Export Citation Format

Share Document