Inorganic Phosphorus Fractionation of Highly Calcareous Soils of Iran

2006 ◽  
Vol 37 (13-14) ◽  
pp. 1877-1888 ◽  
Author(s):  
E. Adhami ◽  
M. Maftoun ◽  
A. Ronaghi ◽  
N. Karimian ◽  
J. Yasrebi ◽  
...  
Soil Research ◽  
2007 ◽  
Vol 45 (4) ◽  
pp. 255 ◽  
Author(s):  
Ebrahim Adhami ◽  
Hamid Reza Memarian ◽  
Farzad Rassaei ◽  
Ehsan Mahdavi ◽  
Manouchehr Maftoun ◽  
...  

Inorganic phosphorus (P) sequential fractionation schemes are applicable techniques to interpret soil P status. The present study was initiated to determine the origin of various P fractions in highly calcareous soils. Inorganic P forms were determined by a sequential fractionation procedure extracting with NaOH (NaOH-P), Na citrate-bicarbonate (CB-P), Na citrate 2 times (C1-P and C2-P), Na citrate-ascorbate (CAs-P), Na citrate-bicarbonate-dithionite (CBD-P), Na acetate (NaAc-P), and HCl (HCl-P). Results showed that NaOH-P was negatively correlated with active iron oxides. CB-P was positively correlated with silt content and negatively related to citrate-bicarbonate-dithionite extractable Fe (Fed). This result illustrates the weathering effect on Ca-P, with Ca-P content declining as a consequence of weathering. A negative correlation was observed between C1-P and citrate ascorbate extractable Fe (FeCAs). Second citrate extractable P (C2-P) was negatively related to calcium carbonate equivalent and positively related to hydroxylamine-hydrochloride and neutral ammonium acetate-hydroquinone extractable Mn (Mnh and Mnq). Fine silt (Fsilt) was the most influential factor affecting CAs-P. It seemed citrate-dithionite-bicarbonate extractable Al (Ald), Mnh, and Mnq have been sinks for CBD-P, while free iron oxide compounds (Feo, Fec, and FeCAs) were a major contributing factor for the formation of NaAc-P. Stable P compounds (HCl-P) of highly calcareous soils originated from coarse silt (Csilt) and hydroxylamine-hydrochloride extractable Mn (Mnh).


Soil Research ◽  
2012 ◽  
Vol 50 (3) ◽  
pp. 249 ◽  
Author(s):  
E. Adhami ◽  
A. Ronaghi ◽  
N. Karimian ◽  
R. Molavi

The aim of the present study was to evaluate the transformation of applied inorganic phosphorus (P) in highly calcareous soils under two moisture regimes. The experimental design was a factorial combination of two rates of P (0 and 300 mg P kg–1 as KH2PO4) and two moisture regimes (field capacity, FC; waterlogged, WL) in a completely randomised design in duplicate with 20 surface soil samples. The fractionation sequence of inorganic P included successive extraction with NaHCO3, NH4 acetate buffer (NH4OAc), MgCl2, NH4F, NaOH–Na2CO3 (HC), Na citrate–bicarbonate–dithionite (CBD), and H2SO4 carried out 80 and 160 days after incubation. Recovery of applied P in each fraction was calculated as the difference between samples treated and untreated with P. Results indicated that NaHCO3-P decreased from 80 to 160 days, and the decrement was higher under WL than FC moisture regime. The NH4OAc-P was lower under WL than FC at 160 days, while P associated with free and crystalline Fe and Al oxides (NH4F-P, HC-P, CBD-P) was higher under WL than FC for both incubation periods. Oxalate-, citrate-, and citrate–ascorbate-extractable iron under FC and in conjunction with oxalate- and CBD-extractable aluminium and quinone- and hydroxylamine–hydrochloride-extractable manganese were the most influential factors regulating all P fractions. Results of the present study revealed that transformation of applied P into Al- and Fe-P fractions is not as low as previously reported in highly calcareous soils and that Al- and Fe-P oxides may be important in P transformation of these soils, especially in waterlogged condition.


Sign in / Sign up

Export Citation Format

Share Document