moisture regime
Recently Published Documents


TOTAL DOCUMENTS

444
(FIVE YEARS 106)

H-INDEX

31
(FIVE YEARS 3)

Management ◽  
2022 ◽  
Vol 34 (2) ◽  
pp. 35-44
Author(s):  
Valeriia Shcherbak

BACKGROUND AND OBJECTIVES. The most important socio-economic task in the current period is to transfer Ukraine's economy to an intensive way of development in order to improve the level and quality of life of the population and solve the full range of social problems. Implementation of such a policy dictates the need to solve problems of reconstruction and modernization of buildings and structures, primarily related to the public sphere (including higher education institutions), in order to eliminate the existing inconsistency of the technical condition and functional and consumer qualities of public buildings to current standards and consumer requirements. Therefore, one of the most urgent directions of development of higher educational institutions is the task of providing effective overhaul and reconstruction of buildings, increasing their energy efficiency.METHODS. The theoretical and methodological basis of the study were the fundamental and applied developments of leading domestic and foreign scientists in the theory and practice of management of energy modernization and energy reconstruction of buildings, increasing energy efficiency of buildings. The factual basis of research were the legislative acts of Ukraine in the field of energy efficiency, normative and methodical documents on the modernization and reconstruction of buildings, Directive 2010/31/EC in the field of energy saving. When solving specific tasks the methods of system and comparative analysis, economic-mathematical methods of efficiency evaluation of energy reconstruction and energy modernization projects were used.FINDINGS. The method of calculation of the reduced resistance to heat transfer of the enclosing structures and the shell of the 4th building of Kyiv National University of Technology and Design as a whole taking into account the temperature and humidity conditions in the fencing marginal zones. It is shown that in the enclosure edge zones the heat protective properties decrease resulting in a deterioration of the heat protection of the whole building. Practical recommendations for the design of fencing structures of modern buildings taking into account the temperature-moisture regime are proposed.CONCLUSION. For the analysis of complex processes of moisture transfer in enclosures, a mathematical model based on the moisture potential is most convenient. A certain difference from the thermal potential (temperature) to the definition of the moisture potential allows to diagnose the most general assessment of the moisture regime of exterior and interior fences on the basis of HUB knowledge on energy efficiency. At use of this model it is possible to consider process of moisture exchange in a wide range of humidity and temperature taking into account movement of a moisture as a basis of carrying out energy reconstruction and energy modernization of operating buildings of the university.


2022 ◽  
Author(s):  
Anthony Mwanthi ◽  
Joseph Mutemi ◽  
Ellen Dyer ◽  
Rachel James ◽  
Franklin Opijah ◽  
...  

Abstract Climate models are useful tools that aid in short to long term prediction of the evolution of climate. In this study we assess how CMIP6 models represent coupling between processes over the land and atmosphere, based on terrestrial and atmospheric indices, to show the nature and strength of the coupling relative to the ERA5 datasets over Africa, with a particular focus on the March-May season. Characterization of the annual cycle indicates that model biases are highest during the peak of the rainfall season, and least during the dry season, while soil moisture biases correspond with rainfall amounts. Models show appreciable sensitivity to regional characteristics; there was model consensus in representing East Africa as a limited soil moisture regime, while major differences were noted in the wet regime over Central Africa. Most CMIP6 models tend to over-estimate the strength of the terrestrial and atmospheric pathways over East and Southern Africa. Inter-model differences in coupling indices could be traced to their inter-annual variability rather than to the mean biases of the variables considered. These results are good indicators towards scientific advancement of land surface schemes in the next generation of climate models for better applications in Africa.


2021 ◽  
pp. 3-14
Author(s):  
Abayomi Eruola

A field experiment was conducted on varietal response of white yam to moisture regime in Abeokuta. The experiment comprised three varieties of yam (Efuru, Ise-osi and Oniyere), three mulching options (grass, polythene and unmulched), and two planting dates (early and late). Treatments were replicated three times using RCBD lay-out. Model for selecting planting date involved relating potential evapotranspiration (PE) to precipitation (P) in the form of 0.1PE<P < 0.5PE, partitioned for attaining optimal planting date into early {T1= Σ(P-0.1PE) ≤ 0} and late {T2 = Σ(P-0.5PE) ≤ 0}, respectively. For humid period defined by P> PE, the physiological parameters and moisture agro-climatic indices measured during phenological stages of yam grown were analyzed with respect to treatments. Result showed that T1 defined as Σ(P-0.1PE) ≤ 10 mm appeared as the best model that significantly (P < 0.05) influenced emergence rate, phenological growth and tuber yield. All yam varieties evaluated were suitable for planting with respect to yield. Efuru and Ise-osi synchronized perfectly with Actual Water Availability and produced good vegetative growth with LAI of 1.08 and 0.91 leading to higher tuber yield of 12 and 11.64 tonnes ha-1, respectively. Grass mulch had tuber yield, 4-6 tonnes ha-1greater than the polythene and unmulched plots in all varieties. Mulching significantly (P< 0.05) increased tuber yield, 6-8 tonnes ha-1than the unmulched. Conclusively, early planting with grass mulch increased tuber yield.


2021 ◽  
Author(s):  
Ilze Karklina ◽  
◽  
Andis Lazdins ◽  
Jelena Stola ◽  
Aldis Butlers ◽  
...  

Forest mineral soil is one of the terrestrial carbon pools, and changes in forest management practices can affect the carbon stock in forest soil. The purpose of the study is to estimate temporal fertilization impact on mineral soil organic carbon stock, depending on fertilizers applied, forest stand type, different dominant tree species of the stands. Coniferous and birch forest stands with mineral soil in the central and eastern part of Latvia were selected for the experiment. The fertilizers used were wood ash and nitrogen containing mineral fertilizer. No significant differences in organic carbon stock in O horizon were detected 2–5 years after fertilization. A tendency of smaller organic carbon stock in upper mineral soil layers (0–10 cm, 10–20 cm) was found in most part of objects. Significantly smaller organic carbon stock was found in upper mineral soil layers (0–10 cm and 10–20 cm) in birch stands with wet mineral soil treated with ammonium nitrate if compared to the control plots, possibly due to a different soil moisture regime of forest stands. The positive and significant correlations between soil organic carbon and nitrogen stocks were found in most part of the objects.


Author(s):  
K. Srinivas Reddy

Abstract: Eco-restoration is a technique for rejuvenation of degraded ecosystem to their near original state. It also helps to control soil erosion, develop microbial ecology, enhance biomass production and socio-economic development. The present study was focused on a new approach called Rejuvenation Technology for less forest area. India is bestowed with the rich diversity of flora and fauna due to diverse environment. Global warming and consequent impending danger of climate changes has necessitated to arrest deforestation. The species diversity has also helped in the selection of appropriate native species to enhance the ecological functions of urbanizing landscapes. Adoption of monoculture plantations though the region appears green, but fulfilling the vital ecosystem functions such as groundwater recharge, food and fodder to dependent biota, etc. Forest Rejuvenation Action Plan was prepared for each Reserve Forest Block with forestry activities like Reserve Forest boundary deep trench, fencing, Plantations of Gacchakaya on trench mounds along the periphery of the Reserve Forest boundary having interface with Revenue Land to protect the forest from biotic interference. Further Soil & Moisture Conservation works were proposed to improve moisture regime. Silvicultural operations like Cultural operations & removal of invasive species were proposed for better natural regeneration & growth of existing root stock. It was further supplemented with plantations like Block plantations, fruit bearing plantations, Yadadri Model plantations, Grassland development in 0.0 - 0.10 canopy density forest area. Further plantation activities like Gap planting, Medicinal herbs & Shurbs, plantation inside and on the mounds of SCT, Bamboo plantations along nalas/Streams were proposed to improve three tier canopy in the Reserve Forest in 0.1 - 0.40. These Forestry Interventions help to improve the forest cover, biodiversity, Carbon sequestration, Water Argumentation etc to meet the required results as per National & Global Commitments. To demonstrate this technology, plantation of seedlings of 5 different canopy density. Block plantation. Yadadri Model Plantations, Grass lands, Forest Fruit bearing Plantations was carried out in a village community degraded land located in Medhal district in Telangana State. This study developed spatial definitions of the Rejuvenation of reserve forest. Keywords: Rejuvenation, Reserve forest, Plantation models, canopy, Soil & Moisture Conservation


2021 ◽  
Author(s):  
Magdalena Szczykulska ◽  
David Boorman ◽  
James Blake ◽  
Jonathan G. Evans

Abstract. The cosmic-ray neutron sensor method of soil moisture measurement is now widely used and is fundamental to the COSMOS-UK soil moisture monitoring network. The method is based on a relationship between a measured flux of neutrons and soil moisture, and requires the neutron count to be adjusted for time variations of atmospheric pressure, humidity and the incoming flux of cosmic-ray neutrons. This note describes an empirical approach to the development of a revised correction factor for the last of these. Using the revised correction factor makes a significant difference to the derived soil moisture at wetter sites. This has implications for quantifying the soil moisture regime at these sites and management decisions that depend on a proper understanding of soil moisture dynamics, such as flood management and the release of greenhouse gases.


2021 ◽  
Vol 2 (01) ◽  
pp. 11-18
Author(s):  
Gyanu Joshi ◽  
Krishna Prasad Sharma ◽  
Mukesh Kumar Chettri

Community forests play a vital role in sustainable development and storing carbon stock to mitigate global warming. This study aimed to assess the plant diversity, carbon stock and regeneration status of two Shorea robusta forests managed by the community - Manehara Community Forest (MCF) and Siddhanath community forests (SCF) of Kailali district, Nepal. These two forests differ in the moisture regime- MCF is with ponds and streams and is mostly wet, but SCF is primarily dry with no ponds and streams. To examine vegetation status and carbon stock in these two forests, twenty circular plots of 20 m radius was laid in each forest using stratified random sampling. Within each main plot, two subplots of 5m radius and three subplots of 2m radius were laid to study shrub and herb characteristics, respectively. Soil sampling was also done to analyze the role of soil moisture in carbon stock and regeneration. For this, soil samples of each plot were collected up to 20cm depth. Altogether 100 plant species were recorded from the study forests. Tree and shrub diversity was higher in MCF than in SCF, but herb diversity and seedling numbers were higher in relatively dry SCF than in MCF. The carbon stock of MCF (92.99t/ha) was higher than in SCF (51.94 t/ha). In both forests, carbon stock increased with the increasing basal area (P = 0.0001). A significant strong positive relationship (P = 0.0001) between density and carbon stock was found in SCF, but this relation was weak (P = 0.018) in MCF. Both community forests were fairly regenerating with a good number of small aged individuals, SCF shows an inverted J shaped density diameter (d-d) curve, whereas MCF shows a bell-shaped d-d curve.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3182
Author(s):  
Chelsea Krieg ◽  
Erin Johnson ◽  
Erin Peck ◽  
Jinjun Kan ◽  
Shreeram Inamdar

Large storms can erode, transport, and deposit substantial amounts of particulate nitrogen (PN) in the fluvial network. The fate of this input and its consequence for water quality is poorly understood. This study investigated the transformation and leaching of PN using a 56-day incubation experiment with five PN sources: forest floor humus, upland mineral A horizon, stream bank, storm deposits, and stream bed. Experiments were subjected to two moisture regimes: continuously moist and dry–wet cycles. Sediment and porewater samples were collected through the incubation and analyzed for N and C species, as well as the quantification of nitrifying and denitrifying genes (amoA, nirS, nirK). C- and N-rich watershed sources experienced decomposition, mineralization, and nitrification and released large amounts of dissolved N, but the amount of N released varied depending on the PN source and moisture regime. Drying and rewetting stimulated nitrification and suppressed denitrification in most PN sources. Storm deposits released large amounts of porewater N regardless of the moisture conditions, indicating that they could readily act as N sources under a variety of conditions. The inputs, processing, and leaching of large, storm-driven PN inputs become increasingly important as the frequency and intensity of large storms is predicted to increase with global climate change.


2021 ◽  
Author(s):  
Rajesh Joshi ◽  
Ninchhen Dolma Tamang ◽  
Surendra Pratap Singh

Abstract There are emergent evidences that the rise in temperature in high altitude regions in comparison to low altitude of the Himalaya is more rapid than other parts of the World. This Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, including cryosphere, hydrology, biodiversity and socio-economic systems. In this paper, we present Temperature Lapse Rates (TLRs) from 20 stations for three treeline transects representing different climate regimes along the Himalayan arc. TLRs were calculated based on high temporal resolution data collected for two year (2017-18) from complex mountain terrain of treeline environment. The annual mean TLR increased with decreasing moisture, being markedly high at dry WH transect (-0.66℃/100 m) and lowest (-0.50℃/100 m) for moist EH transect. The One-Way ANOVA confirms that the TLR varied spatially, declining from West to East across the Himalayan arc, and significantly differ among seasons (F=3.2175; P = 0.03). The lowest mean TLRs were found during the winter season (EH: -0.46℃/100m; CH: -0.40℃/100m; WH: -0.31℃/100m). The monthly TLR varied within a narrow range (-0.49℃/100m to -0.54℃/100m) at EH transect, -0.24℃/100m to -0.68℃/100m at CH transect and from -0.26℃ to -0.90℃ at WH transect with lowest monthly TLR in December (-0.24 to -0.32℃/ 100m) for all three sites. Study shows moisture, snow albedo and reflectance play a key role as controlling factors on TLR in treeline environments. Higher growing season temperatures observed for treelines in Himalaya (8.4±1.8℃, 10.3±1.4℃, and 7.5±2.7℃) shows warmer treeline in Himalaya. The EDW may impact the dynamics of treeline, snow and moisture regime, surface energy balance, increased water stress, species distribution, and growing season of alpine vegetation in the Himalaya. The findings of the study could provide useful insight (ground-based) to re-parameterize the climate models over the Himalayan region. This study can facilitate improving interpolation of air temperature for ecological modeling studies in ungauged and the data-sparse regions, especially for the higher Himalaya where ground based station data are extremely scarce.


2021 ◽  
Vol 61 (5) ◽  
pp. 590-600
Author(s):  
Naďa Antošová ◽  
Patrik Šťastný ◽  
Marek Petro ◽  
Štefan Krištofič

The paper presents partial outputs from an experiment that demonstrated the impact of applying an additional insulation on an existing contact insulation system with a green-algae surface. The aim was mainly to detect the development of microorganisms in the gap between the original and the new insulation. The existing ETICS on the polystyrene-based contact thermal insulation system and EPS-based additional thermal insulation were used in the experiment. A theoretical modelling of temperature conditions showed that this type of doubling the insulation presented the highest risk of condensation of water in the gap between the insulation layers and that these conditions presented suitable humidity conditions for the growth of microorganisms. The reason for the experiment is to demonstrate the need to eliminate microorganisms before applying an additional thermal insulation to surfaces with biocorrosion. This is especially the case where EPS is used. The temperature and humidity parameters obtained during the experiment can be used to model the moisture regime in the gap of other types of insulations (e.g. MW, PUR, PIR.)


Sign in / Sign up

Export Citation Format

Share Document