Kronecker product-based structure preserving preconditioner for three-dimensional space-fractional diffusion equations

2019 ◽  
Vol 97 (3) ◽  
pp. 585-601 ◽  
Author(s):  
Hao Chen ◽  
Wen Lv
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Vasily E. Tarasov

Fractional diffusion equations for three-dimensional lattice models based on fractional-order differences of the Grünwald-Letnikov type are suggested. These lattice fractional diffusion equations contain difference operators that describe long-range jumps from one lattice site to another. In continuum limit, the suggested lattice diffusion equations with noninteger order differences give the diffusion equations with the Grünwald-Letnikov fractional derivatives for continuum. We propose a consistent derivation of the fractional diffusion equation with the fractional derivatives of Grünwald-Letnikov type. The suggested lattice diffusion equations can be considered as a new microstructural basis of space-fractional diffusion in nonlocal media.


Author(s):  
Pratibha Verma ◽  
Manoj Kumar

In this paper, we have considered the multi-dimensional space fractional diffusion equations with variable coefficients. The fractional operators (derivative/integral) are used based on the Caputo definition. This study provides an analytical approach to determine the analytical solution of the considered problems with the help of the two-step Adomian decomposition method (TSADM). Moreover, new results have been obtained for the existence and uniqueness of a solution by using the Banach contraction principle and a fixed point theorem. We have extended the dimension of the space fractional diffusion equations with variable coefficients into multi-dimensions. Finally, the generalized problems with two different types of the forcing term have been included demonstrating the applicability and high efficiency of the TSADM in comparison to other existing numerical methods. The diffusion coefficients do not require to satisfy any certain conditions/restrictions for using the TSADM. There are no restrictions imposed on the problems for diffusion coefficients, and a similar procedures of the TSADM has followed to the obtained analytical solution for the multi-dimensional space fractional diffusion equations with variable coefficients.


Sign in / Sign up

Export Citation Format

Share Document