kronecker product
Recently Published Documents


TOTAL DOCUMENTS

455
(FIVE YEARS 100)

H-INDEX

31
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 653
Author(s):  
Xiaohan Liu ◽  
Chenglin Wen ◽  
Xiaohui Sun

In this paper, a novel design idea of high-order Kalman filter based on Kronecker product transform is proposed for a class of strong nonlinear stochastic dynamic systems. Firstly, those augmenting systems are modeled with help of the Kronecker product without system noise. Secondly, the augmented system errors are illustratively charactered by Gaussian white noise. Thirdly, at the expanded space a creative high-order Kalman filter is delicately designed, which consists of high-order Taylor expansion, introducing magical intermediate variables, representing linear systems converted from strongly nonlinear systems, designing Kalman filter, etc. The performance of the proposed filter will be much better than one of EKF, because it uses more information than EKF. Finally, its promise is verified through commonly used digital simulation examples.


2022 ◽  
Author(s):  
B. Stephen John ◽  
A. Vijayalekshmi ◽  
M. P. Annie Subitha

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2776
Author(s):  
Wen Liu ◽  
Jianfeng Feng

In this paper, we focus on the asymptotic and transient dynamics of the studied ecosystem and measure the response to perturbation of the stochastic ratio-dependent predator–prey model. The method we use is mainly based on the Kronecker product and numerical simulation. Firstly, the mean-square stability matrix can be calculated from the Kronecker product, so as to compute three indicators (root-mean-square resilience, root-mean-square reactivity and root-mean-square amplification envelope) of the response to perturbation for the studied ecosystem. Since the above-measured amounts cannot be obtained explicitly, we use numerical simulation to draw the changing figures within the appropriate parameter range. Then we obtain some conclusions by comparing the numerical results. When perturbing any populations, increasing the disturbance intensity will reduce the mean-square stable area of the system. Ecologists can manage the ecosystem, reduce losses and maximize benefits according to the numerical results of the root-mean-square amplification envelope.


2021 ◽  
Vol 10 (10) ◽  
pp. 25399-25407
Author(s):  
Sriram Bhagavatula ◽  
Dileep Durani Musa ◽  
Murty Kanuri

In this paper, we shall be concerned with Kronecker product or Tensor product of matrices and develop their properties in a systematic way. The properties of the Kronecker product of matrices is used as a tool to establish existence and uniqueness of solutions to two-point boundary value problems associated with system of first order differential systems. A new approach is described to solve the Kronecker product linear systems and establish best least square solutions to the problem. Several interesting examples are given to highlight the importance of Kronecker product of matrices. We present adjoint boundary value problems and deduce a set of necessary and sufficient conditions for the Kronecker product boundary value problem to be self-adjoint.


Author(s):  
J. Vasundhara Devi ◽  
Sadashiv G. Deo ◽  
Ramakrishna Khandeparkar
Keyword(s):  

2021 ◽  
pp. 1-11
Author(s):  
Guo Niu ◽  
Zhengming Ma

Locally Linear Embedding (LLE) is honored as the first algorithm of manifold learning. Generally speaking, the relation between a data and its nearest neighbors is nonlinear and LLE only extracts its linear part. Therefore, local nonlinear embedding is an important direction of improvement to LLE. However, any attempt in this direction may lead to a significant increase in computational complexity. In this paper, a novel algorithm called local quasi-linear embedding (LQLE) is proposed. In our LQLE, each high-dimensional data vector is first expanded by using Kronecker product. The expanded vector contains not only the components of the original vector, but also the polynomials of its components. Then, each expanded vector of high dimensional data is linearly approximated with the expanded vectors of its nearest neighbors. In this way, the proposed LQLE achieves a certain degree of local nonlinearity and learns the data dimensionality reduction results under the principle of keeping local nonlinearity unchanged. More importantly, LQLE does not increase computation complexity by only replacing the data vectors with their Kronecker product expansions in the original LLE program. Experimental results between our proposed methods and four comparison algorithms on various datasets demonstrate the well performance of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document