Modified method for determining an approximate solution of the Fredholm–Volterra integral equations by Taylor’s expansion

2006 ◽  
Vol 83 (8-9) ◽  
pp. 637-649 ◽  
Author(s):  
Xian-Fang Li ◽  
Min Fang
Author(s):  
Fakhrodin Mohammadi

This paper deals with the approximate solution of nonlinear stochastic Itô–Volterra integral equations (NSIVIE). First, the solution domain of these nonlinear integral equations is divided into a finite number of subintervals. Then, the Chebyshev–Gauss–Radau points along with the Lagrange interpolation method are employed to get approximate solution of NSIVIE in each subinterval. The method enjoys the advantage of providing the approximate solutions in the entire domain accurately. The convergence analysis of the numerical method is also provided. Some illustrative examples are given to elucidate the efficiency and applicability of the proposed method.


2021 ◽  
Vol 54 (1) ◽  
pp. 11-24
Author(s):  
Atanaska Georgieva

Abstract The purpose of the paper is to find an approximate solution of the two-dimensional nonlinear fuzzy Volterra integral equation, as homotopy analysis method (HAM) is applied. Studied equation is converted to a nonlinear system of Volterra integral equations in a crisp case. Using HAM we find approximate solution of this system and hence obtain an approximation for the fuzzy solution of the nonlinear fuzzy Volterra integral equation. The convergence of the proposed method is proved. An error estimate between the exact and the approximate solution is found. The validity and applicability of the HAM are illustrated by a numerical example.


2015 ◽  
Vol 63 (1) ◽  
pp. 15-18
Author(s):  
Md Shariful Islam ◽  
Mir Shariful Islam ◽  
Md Zavid Iqbal Bangalee ◽  
AFM Khodadad Khan ◽  
Amal Halder

Real life problems that arise in different branches of science and social science, in the form of differential and integral equations are non-linear in nature. However, methods developed in Mathematics, usually, are suitable for the linear system. In this article, we talk on approximating solution of system of Volterra integral equations of second kind in an analytic way using Adomian decomposition method in Mathematica. DOI: http://dx.doi.org/10.3329/dujs.v63i1.21761 Dhaka Univ. J. Sci. 63(1): 15-18, 2015 (January)


Sign in / Sign up

Export Citation Format

Share Document