scholarly journals A symbolic algorithm for computing recursion operators of nonlinear partial differential equations

2010 ◽  
Vol 87 (5) ◽  
pp. 1094-1119 ◽  
Author(s):  
D. E. Baldwin ◽  
W. Hereman
2019 ◽  
Vol 47 (1) ◽  
pp. 123-126
Author(s):  
I.T. Habibullin ◽  
A.R. Khakimova

The method of constructing particular solutions to nonlinear partial differential equations based on the notion of differential constraint (or invariant manifold) is well known in the literature, see (Yanenko, 1961; Sidorov et al., 1984). The matter of the method is to add a compatible equation to a given equation and as a rule, the compatible equation is simpler. Such technique allows one to find particular solutions to a studied equation. In works (Pavlova et al., 2017; Habibullin et al., 2017, 2018; Khakimova, 2018; Habibullin et al., 2016, 2017, 2018) there was proposed a scheme for constructing the Lax pairs and recursion operators for integrable partial differential equations based on the use of similar idea. A suitable generalization is to impose a differential constraint not on the equation, but on its linearization. The resulting equation is referred to as a generalized invariant manifold. In works (Pavlova et al., 2017; Habibullin et al., 2017, 2018; Khakimova, 2018; Habibullin et al., 2016, 2017, 2018) it is shown that generalized invariant varieties allow efficient construction of Lax pairs and recursion operators of integrable equations. The research was supported by the RAS Presidium Program «Nonlinear dynamics: fundamental problems and applications».


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 545-554
Author(s):  
Asghar Ali ◽  
Aly R. Seadawy ◽  
Dumitru Baleanu

AbstractThis article scrutinizes the efficacy of analytical mathematical schemes, improved simple equation and exp(-\text{Ψ}(\xi ))-expansion techniques for solving the well-known nonlinear partial differential equations. A longitudinal wave model is used for the description of the dispersion in the circular rod grounded via transverse Poisson’s effect; similarly, the Boussinesq equation is used for extensive wave propagation on the surface of water. Many other such types of equations are also solved with these techniques. Hence, our methods appear easier and faster via symbolic computation.


Sign in / Sign up

Export Citation Format

Share Document