Sufficient condition for asymptotic stability of discrete interval systems

1989 ◽  
Vol 49 (5) ◽  
pp. 1799-1803 ◽  
Author(s):  
Yau-Tarng Juang ◽  
Sheng-Lung Tung ◽  
Tai-Cheng Ho
1991 ◽  
Vol 01 (01) ◽  
pp. 93-104 ◽  
Author(s):  
P. BAUER

Robust stability of m-D discrete systems, represented by a m-D difference equation is analyzed. A sufficient condition for stability is derived, which requires the stability of one linear shift-invariant system. For special classes of systems, the stability of one corner of the interval system is a necessary and sufficient condition. The results are applicable to shift-variant and shift-invariant interval m-D systems. Applications and illustrative examples are also provided.


Author(s):  
Aditya Prasad Padhy ◽  
Varsha Singh ◽  
Vinay Pratap Singh

2004 ◽  
Vol 134 (6) ◽  
pp. 1177-1197 ◽  
Author(s):  
Martin Krupa ◽  
Ian Melbourne

Systems possessing symmetries often admit robust heteroclinic cycles that persist under perturbations that respect the symmetry. In previous work, we began a systematic investigation into the asymptotic stability of such cycles. In particular, we found a sufficient condition for asymptotic stability, and we gave algebraic criteria for deciding when this condition is also necessary. These criteria are satisfied for cycles in R3.Field and Swift, and Hofbauer, considered examples in R4 for which our sufficient condition for stability is not optimal. They obtained necessary and sufficient conditions for asymptotic stability using a transition-matrix technique.In this paper, we combine our previous methods with the transition-matrix technique and obtain necessary and sufficient conditions for asymptotic stability for a larger class of heteroclinic cycles. In particular, we obtain a complete theory for ‘simple’ heteroclinic cycles in R4 (thereby proving and extending results for homoclinic cycles that were stated without proof by Chossat, Krupa, Melbourne and Scheel). A partial classification of simple heteroclinic cycles in R4 is also given. Finally, our stability results generalize naturally to higher dimensions and many of the higher-dimensional examples in the literature are covered by this theory.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Ibrahim Yalcinkaya

A sufficient condition is obtained for the global asymptotic stability of the following system of difference equations where the parameter and the initial values (for .


2014 ◽  
Vol 07 (04) ◽  
pp. 1450045 ◽  
Author(s):  
Qinglai Dong ◽  
Wanbiao Ma

In this paper, we consider a simple chemostat model with inhibitory exponential substrate uptake and a time delay. A detailed qualitative analysis about existence and boundedness of its solutions and the local asymptotic stability of its equilibria are carried out. Using Lyapunov–LaSalle invariance principle, we show that the washout equilibrium is global asymptotic stability for any time delay. Using the fluctuation lemma, the sufficient condition of the global asymptotic stability of the positive equilibrium [Formula: see text] is obtained. Numerical simulations are also performed to illustrate the results.


Author(s):  
R. Datko

SynopsisA necessary and sufficient condition is developed for determination of the uniform stability of a class of non-autonomous linear differential-difference equations. This condition is the analogue of the Liapunov criterion for linear ordinary differential equations.


Sign in / Sign up

Export Citation Format

Share Document