New criteria for exponential stability of nonlinear difference systems with time-varying delay

2013 ◽  
Vol 86 (9) ◽  
pp. 1646-1651 ◽  
Author(s):  
Pham Huu Anh Ngoc ◽  
Le Trung Hieu
2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2013 ◽  
Vol 479-480 ◽  
pp. 983-988
Author(s):  
Jenq Der Chen ◽  
Chang Hua Lien ◽  
Ker Wei Yu ◽  
Chin Tan Lee ◽  
Ruey Shin Chen ◽  
...  

In this paper, the switching signal design to robust exponential stability for discrete-time switched systems with interval time-varying delay is considered. LMI-based conditions are proposed to guarantee the global exponential stability for such system with parametric perturbations by using a switching signal. The appropriate Lyapunov functionals are used to reduce the conservativeness of systems. Finally, a numerical example is illustrated to show the main results.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Zhengrong Xiang ◽  
Guoxin Chen

The problems of mean-square exponential stability and robustH∞control of switched stochastic systems with time-varying delay are investigated in this paper. Based on the average dwell time method and Gronwall-Bellman inequality, a new mean-square exponential stability criterion of such system is derived in terms of linear matrix inequalities (LMIs). Then,H∞performance is studied and robustH∞controller is designed. Finally, a numerical example is given to illustrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document