Evaluation of fMRI Activation in Hemiparetic Stroke Patients after Rehabilitation with Low-frequency Repetitive Transcranial Magnetic Stimulation and Intensive Occupational Therapy

Author(s):  
Pradeepa Ruwan Wanni Arachchige ◽  
Ueda Ryo ◽  
Sadhani Karunarathna ◽  
Atsushi Senoo
BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dawei Li ◽  
Aixia Cheng ◽  
Zhiyou Zhang ◽  
Yuqian Sun ◽  
Yingchun Liu

Abstract Background Repetitive transcranial magnetic stimulation (rTMS) has been reported to treat muscle spasticity in post-stroke patients. The purpose of this study was to explore whether combined low-frequency rTMS (LF-rTMS) and cerebellar continuous theta burst stimulation (cTBS) could provide better relief than different modalities alone for muscle spasticity and limb dyskinesia in stroke patients. Methods This study recruited ninety stroke patients with hemiplegia, who were divided into LF-rTMS+cTBS group (n=30), LF-rTMS group (n=30) and cTBS group (three pulse bursts at 50 Hz, n=30). The LF-rTMS group received 1 Hz rTMS stimulation of the motor cortical (M1) region on the unaffected side of the brain, the cTBS group received cTBS stimulation to the cerebellar region, and the LF-rTMS+cTBS group received 2 stimuli as described above. Each group received 4 weeks of stimulation followed by rehabilitation. Muscle spasticity, motor function of limb and activity of daily living (ADL) were evaluated by modified Ashworth Scale (MAS), Fugl-Meyer Assessment (FMA) and Modified Barthel Index (MBI) scores, respectively. Results The MAS score was markedly decreased, FMA and MBI scores were markedly increased in the three groups after therapy than before therapy. In addition, after therapy, LF-rTMS+cTBS group showed lower MAS score, higher FMA and MBI scores than the LF-rTMS group and cTBS group. Conclusion Muscle spasticity and limb dyskinesia of the three groups are all significantly improved after therapy. Combined LF-rTMS and cTBS treatment is more effective in improving muscle spasticity and limb dyskinesia of patients after stroke than LF-rTMS and cTBS treatment alone.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiwei Guo ◽  
Yu Jin ◽  
Xi Bai ◽  
Binghu Jiang ◽  
Lin He ◽  
...  

Objective. To investigate the functional reorganization of the motor network after repetitive transcranial magnetic stimulation (rTMS) in stroke patients with motor dysfunction and the distinction between high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS). Methods. Thirty-three subcortical stroke patients were enrolled and assigned to the HF-rTMS group, LF-rTMS group, and sham group. Each patient of rTMS groups received either 10.0 Hz rTMS over the ipsilesional primary motor cortex (M1) or 1.0 Hz rTMS over the contralesional M1 for 10 consecutive days. A resting-state functional magnetic resonance imaging (fMRI) scan and neurological examinations were performed at baseline and after rTMS. The motor network and functional connectivities intramotor network with the core brain regions including the bilateral M1, premotor area (PMA), and supplementary motor area (SMA) were calculated. Comparisons of functional connectivities and Pearson correlation analysis between functional connectivity changes and behavioral improvement were calculated. Results. Significant motor improvement was found after rTMS in all groups which was larger in two rTMS groups than in the sham group. The functional connectivities of the motor network were significantly increased in bilateral M1, SMA, and contralesional PMA after real rTMS. These changes were only detected in the regions of the ipsilesional hemisphere in the HF-rTMS group and in the regions of the contralesional hemisphere in the LF-rTMS group. Significantly changed functional connectivities of the intramotor network were found between the ipsilesional M1 and SMA and contralesional PMA, between contralesional M1 and contralesional SMA, between contralesional SMA and ipsilesional SMA and contralesional PMA in the HF-rTMS group in which the changed connectivity between ipsilesional M1 and contralesional PMA was obviously correlated with the motor improvement. In addition, the functional connectivity of the intramotor network between ipsilesional M1 and contralesional PMA was significantly higher in the HF-rTMS group than in the LF-rTMS group. Conclusion. Both HF-rTMS and LF-rTMS have a positive effect on motor recovery in patients with subcortical stroke and could promote the reorganization of the motor network. HF-rTMS may contribute more to the functional connectivity reorganization of the ipsilesional motor network and realize greater benefit to the motor recovery.


Sign in / Sign up

Export Citation Format

Share Document