Exponential stabilisation for time-varying delay system with actuator faults: an average dwell time method

2010 ◽  
Vol 41 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Limin Wang ◽  
Cheng Shao
Author(s):  
Shenquan Wang ◽  
Wenchengyu Ji ◽  
Yulian Jiang ◽  
Keping Liu

Considering two types of delays including both time-varying delay and parameter varying delay in continuous switched linear parameter varying systems, the problem of [Formula: see text] filtering under average dwell time switching is illustrated. The [Formula: see text] filter depending on the linear time-varying parameter [Formula: see text] (mode-dependent parameterized filter) is designed at first. Then, based on multiple Lyapunov function and an improved reciprocally convex inequality, the corresponding existence sufficient conditions for the filter could ensure the obtained filter error system exponentially stable with a guaranteed [Formula: see text] performance in the form of linear matrix inequalities. In addition, the designed filter gains under allowed switching signals are computed via the proposed convex optimal algorithm. In the end, two numerical examples show the effectiveness of the results in this work.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2334
Author(s):  
Mohamed Amin Regaieg ◽  
Mourad Kchaou ◽  
Houssem Jerbi ◽  
Attia Boudjemline ◽  
Ahmed Hafaifa

This work discuss the robust stabilization problem for discrete-time switched singular systems with simultaneous presence of time-varying delay and sensor nonlinearity. To this end, an observer-based controller was synthesized that works under asynchronous switching signals. Investigating the average dwell time approach and using a Lyapunov–Krasovskii functional with triple sum terms, sufficient conditions were derived for achieving the existence of such asynchronous controller and guaranteeing the resulting closed-loop system to be exponentially admissible with H∞ performance level. Subsequently, the effectiveness of the proposed control scheme was verified through two numerical examples.


2011 ◽  
Vol 467-469 ◽  
pp. 766-769
Author(s):  
Gui You Pu ◽  
Ge Wen Kang

Systems with large variable delay, traditional control methods can’t performance well. In this paper, a controller combined with the human-simulated intelligent controller (HSIC) and newly dynamic anti-saturation integral controller, is used in the time-varying delay motor speed control. Simulation studies show, there is no chatter in this controller which is always in norm variable structure controller and this method reaches good performance in the time-varying delay system.


Sign in / Sign up

Export Citation Format

Share Document