linear parameter varying
Recently Published Documents


TOTAL DOCUMENTS

1022
(FIVE YEARS 236)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Patrick Mesmer ◽  
Christoph Hinze ◽  
Armin Lechler ◽  
Alexander Verl

<p>The drivetrain flexibility of industrial robots limits their accuracy. To open up new areas of application for industrial robots, an increased dynamic path accuracy has to be obtained. Therefore, this paper addresses this issue by a gain-scheduled drive-based damping control for industrial robots with secondary encoders. For this purpose, a linear parameter-varying (LPV) model is derived as well as a system identification method is presented. Based on this, a gain-scheduled drive-based LPV damping control design is proposed, which guarantees stability and performance under variation of the manipulator configuration. The control performance of the approach is experimentally validated for the three base joints of a KUKA KR210-2 industrial robot. The approach realizes a trade-off between ease of implementation and control performance as well as robustness.</p>


2021 ◽  
Author(s):  
Patrick Mesmer ◽  
Christoph Hinze ◽  
Armin Lechler ◽  
Alexander Verl

<p>The drivetrain flexibility of industrial robots limits their accuracy. To open up new areas of application for industrial robots, an increased dynamic path accuracy has to be obtained. Therefore, this paper addresses this issue by a gain-scheduled drive-based damping control for industrial robots with secondary encoders. For this purpose, a linear parameter-varying (LPV) model is derived as well as a system identification method is presented. Based on this, a gain-scheduled drive-based LPV damping control design is proposed, which guarantees stability and performance under variation of the manipulator configuration. The control performance of the approach is experimentally validated for the three base joints of a KUKA KR210-2 industrial robot. The approach realizes a trade-off between ease of implementation and control performance as well as robustness.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xing He ◽  
Wei Jiang ◽  
Caisheng Jiang

This paper focuses on the linear parameter varying (LPV) modeling and controller design for a flexible air-breathing hypersonic vehicle (AHV). Firstly, by selecting the measurable altitude and velocity as gain-scheduled variables, the original longitudinal nonlinear model for AHV is transformed into the LPV model via average gridding division, vertex trimming, Jacobian linearization, and multiple linear regression within the entire flight envelope. Secondly, using the tensor product model transformation method, the obtained LPV model is converted into the polytopic LPV model via high-order singular value decomposition (HOSVD). Third, the validity and applicability of the HOSVD-based LPV model are further demonstrated by designing a robust controller for command tracking control during maneuvering flight over a large envelope.


2021 ◽  
pp. 57-83
Author(s):  
Mickael Rodrigues ◽  
Habib Hamdi ◽  
Didier Theilliol

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7674
Author(s):  
Gyujin Na ◽  
Yongsoon Eun

This paper proposes an actuator fault detection method for unmanned ground vehicle (UGV) dynamics with four mecanum wheels. The actuator fault detection method is based on unknown input observers for linear parameter varying systems. The technical novelty of current work compared to similar work in the literature is that wheel frictions are directly taken into account in the dynamics of UGV, and unknown input observers are developed accordingly. Including the wheel friction, the vehicle dynamics are in the form of linear parameter varying systems. Friction estimation is also discussed in this work, and the effect of friction mismatch was quantitatively investigated by simulations. The effectiveness of proposed method was evaluated under various operation scenarios of the UGV.


2021 ◽  
Vol 8 ◽  
Author(s):  
Phuc D.H. Bui ◽  
Joshua A. Schultz

This paper presents an observer architecture that can estimate a set of configuration space variables, their rates of change and contact forces of a fabric-reinforced inflatable soft robot. We discretized the continuum robot into a sequence of discs connected by inextensible threads; this allows great flexibility when describing the robot’s behavior. At first, the system dynamics is described by a linear parameter-varying (LPV) model that includes a set of subsystems, each of which corresponds to a particular range of chamber pressure. A real-world challenge we confront is that the physical robot prototype exhibits a hysteresis loop whose directions depend on whether the chamber is inflating or deflating. In this paper we transform the hysteresis model to a semilinear model to avoid backward-in-time definitions, making it suitable for observer and controller design. The final model describing the soft robot, including the discretized continuum and hysteresis behavior, is called the semilinear parameter-varying (SPV) model. The semilinear parameter-varying observer architecture includes a set of sub-observers corresponding to the subsystems for each chamber pressure range in the SPV model. The proposed observer is evaluated through simulations and experiments. Simulation results show that the observer can estimate the configuration space variables and their rate of change with no steady-state error. In addition, experimental results display fast convergence of generalized contact force estimates and good tracking of the robot’s configuration relative to ground-truth motion capture data.


Sign in / Sign up

Export Citation Format

Share Document