Distributed adaptive fault-tolerant supervisory control for leader-following systems with actuator faults

Author(s):  
Jianye Gong ◽  
Bin Jiang ◽  
Yajie Ma ◽  
Xiaodong Han ◽  
Jianglei Gong
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2307
Author(s):  
Sofiane Bououden ◽  
Ilyes Boulkaibet ◽  
Mohammed Chadli ◽  
Abdelaziz Abboudi

In this paper, a robust fault-tolerant model predictive control (RFTPC) approach is proposed for discrete-time linear systems subject to sensor and actuator faults, disturbances, and input constraints. In this approach, a virtual observer is first considered to improve the observation accuracy as well as reduce fault effects on the system. Then, a real observer is established based on the proposed virtual observer, since the performance of virtual observers is limited due to the presence of unmeasurable information in the system. Based on the estimated information obtained by the observers, a robust fault-tolerant model predictive control is synthesized and used to control discrete-time systems subject to sensor and actuator faults, disturbances, and input constraints. Additionally, an optimized cost function is employed in the RFTPC design to guarantee robust stability as well as the rejection of bounded disturbances for the discrete-time system with sensor and actuator faults. Furthermore, a linear matrix inequality (LMI) approach is used to propose sufficient stability conditions that ensure and guarantee the robust stability of the whole closed-loop system composed of the states and the estimation error of the system dynamics. As a result, the entire control problem is formulated as an LMI problem, and the gains of both observer and robust fault-tolerant model predictive controller are obtained by solving the linear matrix inequalities (LMIs). Finally, the efficiency of the proposed RFTPC controller is tested by simulating a numerical example where the simulation results demonstrate the applicability of the proposed method in dealing with linear systems subject to faults in both actuators and sensors.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yan-Hua Ma ◽  
Xian Du ◽  
Lin-Feng Gou ◽  
Si-Xin Wen

AbstractIn this paper, an active fault-tolerant control (FTC) scheme for turbofan engines subject to simultaneous multiplicative and additive actuator faults under disturbances is proposed. First, a state error feedback controller is designed based on interval observer as the nominal controller in order to achieve the model reference rotary speed tracking control for the fault-free turbofan engine under disturbances. Subsequently, a virtual actuator based reconfiguration block is developed aiming at preserving the consistent performance in spite of the occurrence of the simultaneous multiplicative and additive actuator faults. Moreover, to improve the performance of the FTC system, the interval observer is slightly modified without reconstruction of the state error feedback controller. And a theoretical sufficiency criterion is provided to ensure the stability of the proposed active FTC system. Simulation results on a turbofan engine indicate that the proposed active FCT scheme is effective despite of the existence of actuator faults and disturbances.


Author(s):  
Guoqing Zhang ◽  
Shen Gao ◽  
Jiqiang Li ◽  
Weidong Zhang

This study investigates the course-tracking problem for the unmanned surface vehicle in the presence of constraints of the actuator faults, control gain uncertainties, and environmental disturbance. A novel event-triggered robust neural control algorithm is proposed by fusing the robust neural damping technique and the event-triggered input mechanism. In the algorithm, no prior information of the system model about the unknown yawing dynamic parameters and unknown external disturbances is required. The transmission burden between the controller and the actuator could be relieved. Moreover, the control gain-related uncertainties and the unknown actuator faults are compensated through two updated online adaptive parameters. Sufficient effort has been made to verify the semi-global uniform ultimate bounded stability for the closed-loop system based on Lyapunov stability theory. Finally, simulation results are presented to illustrate the effectiveness and superiority of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document