Effect of Prednisone on Bone Marrow Cells Regenerating from Total Body Irradiation

1968 ◽  
Vol 21 (sup106) ◽  
pp. 107-109 ◽  
Author(s):  
Herman Høst
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4142-4142
Author(s):  
Ekapun Karoopongse ◽  
Sabina Janciauskiene ◽  
Charles A. Dinarello ◽  
H. Joachim Deeg ◽  
A. Mario Q. Marcondes

Abstract Abstract 4142 Background: Injury to healthy (non-target) tissues still is a major limitation of radiation therapy, at least in part related to release of cytokines, including TNFα and IL-1β, which amplify tissue damage. Cytokine release is particularly prominent in patients who receive total body irradiation (TBI) before hematopoietic cell transplantation (HCT), as interactions of allogeneic donor cells with patient tissue contribute to the resulting “cytokine storm” and the development of graft versus-host-disease (GVHD). In murine models, administration of alpha-1 anti-trypsin (AAT) in the peri-transplant period decreased GVHD incidence and mortality. AAT, a member of the serine protease inhibitor (serpin) family, is a major protective protein in the circulation and has been used successfully in the clinic for other indications. Methods: We were interested in determining the potential benefits of AAT in preventing toxicity related to the transplant conditioning regimen, specifically TBI. AAT inhibits proteinase-3 (PR3) which, among other targets, cleaves IL-32 thereby leading to activation of TNFa and enhancing the cytokine storm. Since others have also suggested that AAT, via enhanced expression of heme oxygenase-1 (HMOX-1), leads to activation of Nrf2, thereby enhancing transcription of anti-inflammatory cytokines such as IL10 and the IL-1 receptor antagonist (IL1Ra), we determined the overall shift in the cytokine milieu and cell death. Thus, we irradiated male C3H/HeN mice (n = 5 mice per group; 6–8 weeks old) with sub-lethal doses (500, 600 and 700 cGy) of TBI from a 137Cs source. AAT (300 μg/animal) was administered intra-peritoneally 1 hour before and every 48 hours after TBI for a total of 6 doses. The effect of TBI/AAT on hematopoiesis was analyzed by growing granulocyte-macrophage colony forming units (GM-CFU) from bone marrow cells, on days 3, 7 and 14 after TBI. Results: Results were compared to those with cells from albumin-treated controls. Marrows (days 3 and 7) from AAT-treated mice generated higher GM-CFU counts than those from controls (mean = 25 vs. 5 colonies per 25 × 103 cells plated after 500cGy, and 15 vs. 3 colonies per 25 × 103 cells after 600 cGy). Peripheral blood and unsorted bone marrow from AAT-treated mice showed up-regulation of HMOX-1 and Nrf2 (30 and 50 log2 increase, respectively), and enhanced transcription of IL-10 and IL-1Ra (50 and 10 log2, respectively) compared to albumin treated donors. PR3 and TNFα, in contrast, were down-regulated (5 log2 and 7 log2 decrease in comparison to albumin treated controls). The cytokine mitigating effects of AAT were accompanied by attenuation of ATM-p53-dependent DNA damage responses in bone marrow cells (determined on days 3, 7, and 14), showing a 3-fold decrease in p53 protein levels, and a 6-fold decrease in phospho-ATM in comparison to albumin treated controls (peak day 7). In addition, protein levels of caspase 3 and caspase 9 were decreased (2-fold and 5-fold, respectively; peak on day 7) in unsorted marrow cells and spleen lysates of AAT treated mice in comparison to albumin treated controls. Bone marrow histopathology revealed normo-cellularity and a decrease in cleaved caspase 3 staining in AAT-treated mice compared to albumin treated animals. Summary and conclusions: AAT treatment significantly mitigated the hematopoietic toxicity induced by sub-lethal TBI. The mechanism involves cytokine suppression, associated with attenuation of ATM-p53 mediated DNA damage response. Taken together, these data suggest that AAT treatment pre-TBI provides protection against radiation injury. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2376-2383 ◽  
Author(s):  
Ronald van Os ◽  
Donald Dawes ◽  
John M.K. Mislow ◽  
Alice Witsell ◽  
Peter M. Mauch

Abstract Administration of kit-ligand (KL) before and after doses of 5-fluorouracil (5-FU) results in marrow failure in mice, presumably because of enhanced KL-induced cycling of stem cells, which makes them more susceptible to the effects of 5-FU. In attempt to capitalize on this effect on stem cells, we studied the ability of KL and 5-FU to allow stable donor engraftment of congenically marked marrow in a C57BL/6 (B6) mouse model. KL was administered subcutaneously at 50 μg/kg, 21 hours and 9 hours before and 3 hours after each of two doses of 5-FU (125 mg/kg) given 7 days apart to B6-recipients. Animals then received three injections of 107 congenic B6-Gpi-1a-donor bone marrow cells at 24, 48, and 72 hours after the second 5-FU dose. A separate group of animals received a single dose of either 1 × 107 or 3 × 107 donor marrow cells 24 hours after the last 5-FU dose. The level of engraftment was measured from Gpi-phenotyping at 1, 3, 6, and 8 months in red blood cells (RBCs) and at 8 months by phenotyping cells from the thymus, spleen, and marrow. Percent donor engraftment in RBCs appeared stable after 6 months. The percent donor engraftment in RBCs at 8 months was significantly higher in KL + 5-FU prepared recipients (33.0 ± 2.7), compared with 5-FU alone (18.5 ± 2.6, P < .0005), or saline controls (17.8 ± 1.7, P < .0001). In an additional experiment, granulocyte colony-stimulating factor (100 μg/dose) was added to a reduced dose of KL (12.5 μg/dose); engraftment was similar to KL alone. At 8 months after transplantation the levels of engraftment in other tissues such as bone marrow, spleen, and thymus correlated well with erythroid engraftment to suggest that multipotent long-term repopulating stem cells had engrafted in these animals. There are concerns for the toxicity of total body irradiation (TBI)- or busulfan-based regimens in young recipients of syngeneic or transduced autologous marrow who are transplanted for correction of genetic disease. In these recipients complete donor engraftment may not be needed. The results with KL and 5-FU are encouraging for the further refinement of non-TBI, nonbusulfan techniques to achieve stable mixed chimerism.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3178-3178
Author(s):  
Zhong Chao Han ◽  
Bin Liu ◽  
Lihua Zhao

Abstract In cancer therapy, specific radioprotection of normal tissue and antiangiogenesis are the ways to increase the therapeutic gain. Here we describe a novel gene therapy, which uses attenuated salmonella SL3261 as oral vectors carrying with cDNA of platelet factor 4 (PF4) or that of a truncated PF4. After oral administrations of attenuated salmonella carrying with cDNA of PF4 or truncated PF4, the survival rate of mice which received sublethal total body irradiation was improved by 50%, In comparison with the control mice, the bone marrow cells obtained from the mice of experimental group increased (13.2±8.3, 15.7±1.5 vs 4.1 ± 2.0 P<0.05) at day 7 after TBI, and the number of HPP-CFC of bone marrow cells also increased significantly (15.7±9, 11.7±5 vs 4.3±4.1 P<0.05) at day 7, suggesting a stimulating effect of PF4 on hematopoietic recovery. This gene therapy also caused significant tumor regression. The microvessel density (MVD) of tumors was significantly decreased in the group of treated mice compared to controls (4.25±0.96, 4.08±0.56 vs 11±0.83 P<0.05). Analysis TUNEL kit revealed an increase in the number of apoptosis cells in tumors of mice treated by SL3261 carrying with cDNA of PF4 or a truncated PF4. GFP expression and gene integration were detected in the liver, kidney, spleens, intestine, peripheral blood, bone marrow and tumors samples of the SL3261 treated mice, and the expression of GFP was higher in tumors than that in other tissues. These data demonstrate for the first time a dual biological function of PF4 against tumor growth and radiation injury. These results also demonstrate that attenuated salmonella can be used in vivo as a DNA delivery vector


1973 ◽  
Vol 138 (1) ◽  
pp. 130-142 ◽  
Author(s):  
Varda Rotter ◽  
Amiela Globerson ◽  
Ichiro Nakamura ◽  
Nathan Trainin

The immune response to SRBC was measured in the spleens of adult thymectomized, total body irradiated mice injected with various combinations of thymus and bone marrow cells together with thymic humoral factor (THF). It was found that the number of plaque-forming cells was significantly increased when THF was given in vivo immediately after thymus cell administration or when thymus cells were incubated in THF before injection. On the other hand, bone marrow cells equally treated did not manifest any T cell activity, since THF-treated bone marrow cells were not able to substitute thymus cells in the system used. The results accumulated in the present experiments indicate, therefore, that the target cells for THF activity are thymus cells which acquire a higher T helper cell capacity after THF treatment.


Blood ◽  
1971 ◽  
Vol 37 (6) ◽  
pp. 634-646 ◽  
Author(s):  
PERETZ RESNITZKY ◽  
DOV ZIPORI ◽  
NATHAN TRAININ

Abstract The influence of neonatal thymectomy on the behavior of hemopoietic stem cells of bone marrow and spleen was investigated by studying the colony-forming capacity (CFC) of these cells. Bone marrow cells (2 x 104) from neonatally thymectomized C3H mice, injected into lethally irradiated (850 R) recipients, showed a reduced CFC in relation to that of intact control donors. This decrease, which was more evident in female than in male mice, started early in life after thymectomy, and persisted throughout all the ages investigated. In most of the experiments a concomitant decrease in the total number of nucleated bone marrow cells was observed following thymectomy. When spleen cells (105) from neonatally thymectomized mice were tested under similar experimental conditions, they manifested a CFC equivalent to that of intact controls. Neonatal thymectomy increased the number of spontaneous colonies appearing in the spleen of mice after a sublethal (650 R) total-body irradiation. In contrast, when neonatal splenectomy was tested, a moderate increase in the CFC of bone marrow and in the total number of bone marrow cells was observed. The present results suggest that the thymus plays a role in the proliferative pattern of hemopoietic stem (progenitor) cells located in the bone marrow, whereas it does not influence the behavior of more mature (precursor) hemopoietic cells populating the spleen.


1992 ◽  
Vol 12 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Pilar Sancho ◽  
Elvira Cuenllas ◽  
Soledad Gaitan ◽  
Concepción Tejero

The effect of total body irradiation (5 Gy) on functional mouse erythroid lineage has been studied. The transferrin binding capacity by bone marrow cells and the activity of glycolytic regulatory enzymes and intracellular levels of 2,3 bisphosphoglycerate in peripheral blood erythrocytes have been determined. Results obtained along one year post-irradiation period suggest a complete recovery in the erythroid cell lineage with respect to the biological endpoints investigated.


Sign in / Sign up

Export Citation Format

Share Document