Fabric defect detection based on the saliency map construction of target-driven feature

2017 ◽  
Vol 109 (9) ◽  
pp. 1133-1142 ◽  
Author(s):  
Shengqi Guan ◽  
Hongyu Shi
2015 ◽  
Vol 27 (5) ◽  
pp. 738-750 ◽  
Author(s):  
Zhoufeng Liu ◽  
Chunlei Li ◽  
Quanjun Zhao ◽  
Liang Liao ◽  
Yan Dong

Purpose – Fabric defect detection plays an important role in textile quality control. The purpose of this paper is to propose a fabric defect detection algorithm via context-based local texture saliency analysis. Design/methodology/approach – In the proposed algorithm, a target image is first divided into blocks, then the Local Binary Pattern (LBP) technique is used to extract the texture features of blocks. Second, for a given image block, several other blocks are randomly chosen for calculating the LBP contrast between a given block and the randomly chosen blocks. Based on the obtained contrast information, a saliency map is produced. Finally, saliency map is segmented by using an optimal threshold, which is obtained by an iterative approach. Findings – The experimental results show that the proposed algorithm, integrating local texture features and global image texture information, can detect texture defects effectively. Originality/value – In this paper, a novel fabric defect detection algorithm via context-based local texture saliency analysis is proposed.


2020 ◽  
Vol 32 (4) ◽  
pp. 483-498
Author(s):  
Chunlei Li ◽  
Chaodie Liu ◽  
Zhoufeng Liu ◽  
Ruimin Yang ◽  
Yun Huang

PurposeThe purpose of this paper is to focus on the design of automated fabric defect detection based on cascaded low-rank decomposition and to maintain high quality control in textile manufacturing.Design/methodology/approachThis paper proposed a fabric defect detection algorithm based on cascaded low-rank decomposition. First, the constructed Gabor feature matrix is divided into a low-rank matrix and sparse matrix using low-rank decomposition technique, and the sparse matrix is used as priori matrix where higher values indicate a higher probability of abnormality. Second, we conducted the second low-rank decomposition for the constructed texton feature matrix under the guidance of the priori matrix. Finally, an improved adaptive threshold segmentation algorithm was adopted to segment the saliency map generated by the final sparse matrix to locate the defect regions.FindingsThe proposed method was evaluated on the public fabric image databases. By comparing with the ground-truth, the average detection rate of 98.26% was obtained and is superior to the state-of-the-art.Originality/valueThe cascaded low-rank decomposition was first proposed and applied into the fabric defect detection. The quantitative value shows the effectiveness of the detection method. Hence, the proposed method can be used for accurate defect detection and automated analysis system.


2016 ◽  
Vol 28 (4) ◽  
pp. 530-542 ◽  
Author(s):  
Chunlei Li ◽  
Ruimin Yang ◽  
Zhoufeng Liu ◽  
Guangshuai Gao ◽  
Qiuli Liu

Purpose – Fabric defect detection plays an important role in textile quality control. The purpose of this paper is to propose a fabric defect detection algorithm using learned dictionary-based visual saliency. Design/methodology/approach – First, the test fabric image is splitted into image blocks, and the learned dictionary with normal samples and defective sample is constructed by selecting the image block local binary pattern features with highest or lowest similarity comparing with the average feature vector; second, the first L largest correlation coefficients between each test image block and the dictionary are calculated, and other correlation coefficients are set to zeros; third, the sum of the non-zeros coefficients corresponding to defective samples is used to generate saliency map; finally, an improve valley-emphasis method can efficiently segment the defect region. Findings – Experimental results demonstrate that the generated saliency map by the proposed method can efficiently outstand defect region comparing with the state-of-the-art, and segment results can precisely localize defect region. Originality/value – In this paper, a novel fabric defect detection scheme is proposed via learned dictionary-based visual saliency.


2011 ◽  
Vol 460-461 ◽  
pp. 617-620
Author(s):  
Xiu Chen Wang

Aiming at time-consuming and ineffective problem of image window division in fabric defect detection, this paper proposes a new adaptive division method after a large number of experiments. This method can quickly and exactly recognize defect feature. Firstly, a division model on adaptive window is established, secondly, the formula to anticipate generally situation of fabric image is given according to the peaks and valleys change in the model, and methods to calculate the division size and position of adaptive window are given. Finally, we conclude that the algorithm in this paper can quickly and simply select the size and position of window division according to actual situation of different fabric images, and the time of image analysis is shortened and the recognition efficiency is improved.


Sign in / Sign up

Export Citation Format

Share Document