scholarly journals Nonlinear hunting stability of high-speed railway vehicle on a curved track under steady aerodynamic load

2019 ◽  
Vol 58 (2) ◽  
pp. 175-197 ◽  
Author(s):  
Han Wu ◽  
Xiao-Hui Zeng ◽  
Jiang Lai ◽  
Yang Yu
2018 ◽  
Vol 18 (07) ◽  
pp. 1850093 ◽  
Author(s):  
Xiao-Hui Zeng ◽  
Jiang Lai ◽  
Han Wu

With the rising speed of high-speed trains, the aerodynamic loads become more significant and their influences on the hunting stability of railway vehicles deserve to be considered. Such an effect cannot be properly considered by the conventional model of hunting stability analysis. To this end, the linear hunting stability of high-speed railway vehicles running on tangent tracks is studied. A model considering the steady aerodynamic loads due to the joint action of the airflow facing the moving train and the crosswind, is proposed for the hunting stability analysis of a railway vehicle with 17 degrees of freedom (DOF). The key factors considered include: variations of the wheel–rail normal forces, creep coefficients, gravitational stiffness and angular stiffness due to the actions of the aerodynamic load, which affects the characteristics of hunting stability. Using the computer program developed, numerical calculations were carried out for studying the behavior of the linear hunting stability of vehicles under steady aerodynamic loads. The results show that the aerodynamic loads have an obvious effect on the linear critical speeds and instability modes. The linear critical speed decreases monotonously as the crosswind velocity increases, and the influences of pitch moment and lift force on the linear critical speed are larger than the other components of the aerodynamic loads.


2016 ◽  
Vol 22 (20) ◽  
pp. 4159-4175 ◽  
Author(s):  
Xiaohui Zeng ◽  
Han Wu ◽  
Jiang Lai ◽  
Hongzhi Sheng

Aerodynamic loads may have effects on the hunting stability, and the factor of curved track makes it more complicated. Therefore, considering the steady aerodynamic loads generated by crosswind and airflow in the opposite advancing direction of train, the hunting stability of high-speed railway vehicle on a curved track is studied in this paper. The changes of gravitational restoring force and creep coefficients which are caused by aerodynamic loads are considered, and the change of equilibrium position due to aerodynamic loads, centrifugal force and the factor of curved track is also in consideration. A mathematical model of a high-speed railway vehicle during curve negotiation with aerodynamic loads is set up. A program based on the model is written and verified. Using this program, the linear critical speed considering the effects of aerodynamic loads is determined by the eigenvalue analysis. This paper investigates the critical speeds in three aerodynamic conditions. Considering the aerodynamic loads, the dependence of critical speed on curve radius and super-elevation is analyzed, and the impact of aerodynamic loads on instability mode is analyzed as well. In addition, this paper obtains the dominant factors affecting critical speed and the variation tendency of critical speed with primary longitudinal stiffness by orthogonal experiments. The results show that the critical speed decreases or increases while the wind is blowing to outer rail or inner rail respectively. The aerodynamic loads produce obvious effects on the instability mode. The variation tendency of critical speed dependence on curve radius in the conditions with aerodynamic loads keeps consistent with the case without aerodynamic loads. It is seen from the orthogonal experiments that, aerodynamic loads and curve radius are the dominant factors affecting linear critical speed of vehicle on a curved track, and the linear critical speed decreases with the increasing of primary longitudinal stiffness.


Author(s):  
Sono Bhardawaj ◽  
Rakesh Chandmal Sharma ◽  
Sunil Kumar Sharma ◽  
Neeraj Sharma

Increasing demand for railway vehicle speed has pushed the railway track designers to develop high-quality track. An important measure of track quality is the character of the transition curve track connecting different intersecting straight tracks. A good transition curve track must be able to negotiate the intermittent stresses and dynamic effects caused by changes in lateral acceleration at high speed. This paper presents the constructional methods for planning transition curves considering the dynamics of movement. These methods consider the non-compensated lateral acceleration, deviation in lateral acceleration and its higher time derivatives. This paper discusses the laying methods of circular, vertical and transition curves. Key aspects in laying a curved track e.g. widening of gauge on curves are discussed in this paper. This paper also suggests a transition curve which is effective not only from a dynamic point of view considering lateral acceleration and its higher time derivative but also consider the geometric conditions along with the required deflection angle.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chen Wang ◽  
Shihui Luo ◽  
Ziqiang Xu ◽  
Chang Gao ◽  
Weihua Ma

In order to find out the reason for the bogie frame instability alarm in the high-speed railway vehicle, the influence of wheel tread profile of the unstable vehicle was investigated. By means of wheel-rail contact analysis and dynamics simulation, the effect of tread wear on the bogie frame lateral stability was studied. The result indicates that the concave wear of tread is gradually aggravated with the increase of operation mileage; meanwhile the wheel-rail equivalent conicity also increases. For the rail which has not been grinded for a long time, the wear of gauge corner and wide-worn zone is relatively severe; the matching equivalent conicity is 0.31-0.4 between the worn rail and the concave-worn-tread wheel set. The equivalent conicity between the grinded rail and the concave-worn tread is below 0.25; the equivalent conicities are always below 0.1 between the reprofiled wheel set and various rails. The result of the line test indicates that the lateral acceleration of bogie frame corresponding to the worn wheel-rail can reach 8.5m/s2, and the acceleration after the grinding is reduced below 4.5m/s2. By dynamics simulation, it turns out that the unreasonable wheel-rail matching relationship is the major cause of the bogie frame lateral alarm. With the tread-concave wear being aggravated, the equivalent conicity of wheel-rail matching constantly increases, which leads to the bogie frame lateral instability and then the frame instability alarm.


Author(s):  
Vivek Kumar ◽  
Vikas Rastogi ◽  
PM Pathak

Nowadays, rail transport is a very important part of the transportation network for any countries. The demand for high operational speed makes hunting a very common instability problem in railway vehicles. Hunting leads to discomfort and causes physical damage to carriage components, such as wheels, rails, etc. The causes of instability and derailment should be identified and eliminated at the designing stage of a train to ensure its safe operation. In most of the earlier studies on hunting behaviour, a simplified model with a lower degree of freedom were considered, which resulted in incorrect results in some instances. In this study, a complete bond graph model of a railway vehicle with 31 degrees of freedom is presented to determine the response of a high-speed railway vehicle. For this purpose, two wheel–rail contacts grounded on a flange contact and Kalker’s linear creep theory are implemented. The model is simulated to observe the effects of suspension elements on the vehicle’s critical hunting velocity. It is observed that the critical hunting speed is extremely sensitive to the primary longitudinal and lateral springs. Other primary and secondary springs and dampers also affect the critical speed to some extent. However, the critical hunting velocity is insensitive to vertical suspension elements for both the primary and secondary suspensions. Also, the critical speed is found to be inversely related to the conicity of the wheel.


Sign in / Sign up

Export Citation Format

Share Document