curved track
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 30)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 11727
Author(s):  
Jan Kalivoda ◽  
Petr Bauer ◽  
Zdeněk Novák

The paper is created within a project which aims to design a system of active wheelset steering for an electric four-axle locomotive. The wheelset steering system enables reduction in forces acting in the wheel-rail contacts in a curved track and consequently a reduction in wear and maintenance costs of both vehicles and rails is achieved. The project consists of three main parts: computer simulations, scaled roller rig experiments, and field tests. The paper is focused on the fundamental aspects of the first and the second part on the project. Track curvature estimation based on the rotation of the bogies towards the car body is proposed and assessed by computer simulations across varying track radiuses, vehicle speeds, and friction conditions. The scaled roller rig has been innovated in order to simulate bogie run in a curved track with uncompensated value of lateral acceleration and instrumented with a system of measurement of lateral wheel-rail forces. The experimental bogie has been equipped with systems of active wheelset steering and measurement of axle-box forces. The experiment setup, newly developed and applied systems of forces measurement and wireless signal transmission, and results of the first experiments are described in detail. Performed computer simulations and scaled roller rig experiments show that active wheelset steering is effective and practically implementable method of reducing guiding forces acting between railway vehicle wheels and rails in a curved track.


Author(s):  
Yamika Patel ◽  
◽  
Vikas Rastogi ◽  
Wolfgang Borutzky ◽  
◽  
...  

The main intention of this research work is to study the derailment response of high speed railway vehicle (HSRV) cruising on a curved track. In previous research work, lower degree of freedom (DOF) has been considered for the derailment analysis which may not give more accurate results. Hence, a 31 DOF bondgraph model of HSRV has been developed which consist of carbody, two truck frames and two selfsame wheelsets for each truck frame. Vertical, lateral, roll, yaw and pitch motion are considered for carbody and bogie and except pitch motion all the other motion are considered for wheelsets. Non-linearities in terms of heuristic nonlinear creep model and flange contact has been employed to simulate the derailment response at high speed. The effect of vehicle speed running on a curved track was investigated for derailment quotient. The main aim of present research work to evaluate derailment quotient at the speed range of 150 kmph to 600 kmph for hard and soft suspension parameter. Derailment quotient has been calculated for both linear and nonlinear creep models and it is seen that DQ for linear model has a lower value compare to non linear creep. The major advantages of the proposed model are that, the presented model can actively predict the derailment of a railway vehicle, and also precisely determine the nonlinear critical hunting speeds.


Author(s):  
Vladimir P. BELTIUKOV ◽  
◽  
Andrey V. ANDREEV ◽  

Objective: To determine the optimal elevation of the outer rail in a curved track section based on technical and economic criteria, calculating the life cycle cost using the methods of life cycle re-source management, risks, and reliability analysis (URRAN methodology). Methods: The authors used multivariate analysis, point estimation, the probability theory and mathematical statistics, the theory of reliability of technical systems, the URRAN methodology, field observations of the condi-tion of the curved track sections and the scope of work during their maintenance. Results: A model of the overhaul cycle of a curved track section has been developed. The dependences of the change in the intensity of the accumulation of faults and the cost of track maintenance during the overhaul cycle on the average values of undamped train accelerations when moving along the sur-veyed sections are presented. The optimal values of undamped acceleration are determined for various operating conditions of railway curves, which provide the minimum track maintenance costs. The authors have found that the minimum cost of the overhaul cycle is the factor for choos-ing the optimal undamped acceleration during the overhaul cycle. The optimal elevation of the out-er rail has been calculated and the actual values in the investigated sections have been analyzed. The method’s economic efficiency is calculated in the form of the ratio of the difference between the costs of the overhaul cycle for the actual and optimal elevations of the outer rail. Practical im-portance: Optimization of the elevation of the outer rail will enable minimizing the intensity of the accumulation of faults and, therefore, reduce the cost of maintenance on the track. The total cost of routine track maintenance will be reduced by 5–10 %.


Author(s):  
Xianmai Chen ◽  
Liu Pan ◽  
Lei Xu ◽  
Can Shi

In this work, a systematic vehicle–curved track dynamic model is presented, in which the vehicle is modeled as a multi-rigid-body system. The track structure is modeled by finite element method with curved rail beam element considered in geometry. To obtain accurate dynamic behavior of railway ballasted track, the resistance characteristics of ballast bed are revealed by introducing the discrete element method. Besides, a two-step iterative-update method is improved to solve the multi-nonlinearity of the vehicle–curved track dynamic interaction. To improve the computational efficiency, and the improved infinite cyclic calculation method is introduced. Apart from the model validations, the application of this model in engineering practices, such as the vehicle-induced vibration of the continuously welded rail (CWR), has been revealed, and some conclusions are drawn from the numerical studies.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1698
Author(s):  
Dagmara Iwańska ◽  
Piotr Tabor ◽  
Olga Grabowska ◽  
Andrzej Mastalerz

Background: This study assesses curved track effects on fatigue symmetry and lower limb muscle activity while taking maximum velocity running kinematics into account. Methods: Polish master class athletes were examined (age 24.6 ± 3.67 years, bm 78.9 ± 6.02 kg, and bh 186.1 ± 6.63 cm). The measurements were made on a 400 m synthetic surface athletics track. The DelSys 16 channel system was employed to measure the activity of the right and left leg muscles. The kinematic variables of the run were obtained using a 3-axis accelerometer built into the recorder. Results: The study revealed curved track effects on asymmetric muscle activity and running kinematics in the first two sections of the run. On the first curve, the symmetry index (SI) was 8.1%, while in on straight, it was 11.5%. Moreover, significantly lower values of the fatigue index b were found for the right limb (F(3.36) = 6.504; p = 0.0152). Conclusions: A reduction of asymmetric muscle activity is linked with compensatory muscle stimulation triggered by the nervous system and with adjusting running kinematics to changing external conditions. Therefore, the main focus further research should be on the optimal interaction between stride length and frequency in relation to the muscle activity corresponding to the track geometry.


Author(s):  
Sono Bhardawaj ◽  
Rakesh Chandmal Sharma ◽  
Sunil Kumar Sharma ◽  
Neeraj Sharma

Increasing demand for railway vehicle speed has pushed the railway track designers to develop high-quality track. An important measure of track quality is the character of the transition curve track connecting different intersecting straight tracks. A good transition curve track must be able to negotiate the intermittent stresses and dynamic effects caused by changes in lateral acceleration at high speed. This paper presents the constructional methods for planning transition curves considering the dynamics of movement. These methods consider the non-compensated lateral acceleration, deviation in lateral acceleration and its higher time derivatives. This paper discusses the laying methods of circular, vertical and transition curves. Key aspects in laying a curved track e.g. widening of gauge on curves are discussed in this paper. This paper also suggests a transition curve which is effective not only from a dynamic point of view considering lateral acceleration and its higher time derivative but also consider the geometric conditions along with the required deflection angle.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110251
Author(s):  
Nazmul Hasan

There is no industry accepted analytical model to compute the critical temperature differential for the buckling of an unloaded curved track in North American literature. In this paper, the critical temperature differential for the buckling of an unloaded curved track is formulated by incorporating a value of unity for the factor of safety in the previously developed formula, which was developed considering thermal loading only. The factor of safety was the ratio between the resistance of a tie in an unloaded track against lateral displacement in the ballast and the lateral thermal load on a tie. The derived formula of the critical temperature differential for the buckling of an unloaded curved track is simple opposed to a complicated formula endorsed in the current European literature from 1969. The new formula is also validated in this paper. The critical temperature differentials for buckling of sharp and super-sharp curves have significant implications for track design and maintenance.


Author(s):  
Liu Pan ◽  
Lei Xu ◽  
Xianmai Chen ◽  
Zixu Zhu

Abstract In this work, a model for characterizing the ballasted track-vehicle interaction is presented. The vehicle is modelled as a multi-rigid-body system consisting of a car body, two bogie frames and four wheelsets, and the track is modelled by finite elements including the rail, the sleeper and the track bed. All bodies are connected by spring-dashpot elements. With novelty, the geometric nonlinearity of curved rail beam and mechanical nonlinearity of ballasted bed lateral resistance have been fully considered. Besides, numerical solution procedures including iteration and increment have been also developed to accurately clarify the dynamic nonlinear performance of vehicle-track systems. Apart from model validations in statics and dynamics, the influence of track nonlinearity and curved track radius on vehicle-track dynamic performance has been revealed in detail.


Sign in / Sign up

Export Citation Format

Share Document