Ap-Adic Quantum Weyl Algebra

2010 ◽  
Vol 38 (6) ◽  
pp. 2300-2310 ◽  
Author(s):  
Fana Tangara
Author(s):  
Jian-zu Zhang ◽  
Roberto Floreanini ◽  
Steven Duplij ◽  
Steven Duplij ◽  
Dmitri Gitman ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
GENQIANG LIU ◽  
YANG LI

Abstract In 1996, a q-deformation of the universal enveloping algebra of the Schrödinger Lie algebra was introduced in Dobrev et al. [J. Phys. A 29 (1996) 5909–5918.]. This algebra is called the quantum Schrödinger algebra. In this paper, we study the Bernstein-Gelfand-Gelfand (BGG) category $\mathcal{O}$ for the quantum Schrödinger algebra $U_q(\mathfrak{s})$ , where q is a nonzero complex number which is not a root of unity. If the central charge $\dot z\neq 0$ , using the module $B_{\dot z}$ over the quantum Weyl algebra $H_q$ , we show that there is an equivalence between the full subcategory $\mathcal{O}[\dot Z]$ consisting of modules with the central charge $\dot z$ and the BGG category $\mathcal{O}^{(\mathfrak{sl}_2)}$ for the quantum group $U_q(\mathfrak{sl}_2)$ . In the case that $\dot z = 0$ , we study the subcategory $\mathcal{A}$ consisting of finite dimensional $U_q(\mathfrak{s})$ -modules of type 1 with zero action of Z. We directly construct an equivalence functor from $\mathcal{A}$ to the category of finite dimensional representations of an infinite quiver with some quadratic relations. As a corollary, we show that the category of finite dimensional $U_q(\mathfrak{s})$ -modules is wild.


2000 ◽  
Vol 28 (11) ◽  
pp. 5269-5274 ◽  
Author(s):  
J. Boyette ◽  
M. Leyk ◽  
J. Talley ◽  
T. Plunkett ◽  
K. Sipe

2002 ◽  
Vol 31 (9) ◽  
pp. 513-553 ◽  
Author(s):  
Stanislav Pakuliak ◽  
Sergei Sergeev

We investigate anN-state spin model called quantum relativistic Toda chain and based on the unitary finite-dimensional representations of the Weyl algebra withqbeingNth primitive root of unity. Parameters of the finite-dimensional representation of the local Weyl algebra form the classical discrete integrable system. Nontrivial dynamics of the classical counterpart corresponds to isospectral transformations of the spin system. Similarity operators are constructed with the help of modified Baxter'sQ-operators. The classical counterpart of the modifiedQ-operator for the initial homogeneous spin chain is a Bäcklund transformation. This transformation creates an extra Hirota-type soliton in a parameterization of the chain structure. Special choice of values of solitonic amplitudes yields a degeneration of spin eigenstates, leading to the quantum separation of variables, or the functional Bethe ansatz. A projector to the separated eigenstates is constructed explicitly as a product of modifiedQ-operators.


2015 ◽  
Vol 67 ◽  
pp. 36-54 ◽  
Author(s):  
Askar Dzhumadil'daev ◽  
Damir Yeliussizov

Sign in / Sign up

Export Citation Format

Share Document