scholarly journals Quantum relativistic Toda chain at root of unity: isospectrality, modifiedQ-operator, and functional Bethe ansatz

2002 ◽  
Vol 31 (9) ◽  
pp. 513-553 ◽  
Author(s):  
Stanislav Pakuliak ◽  
Sergei Sergeev

We investigate anN-state spin model called quantum relativistic Toda chain and based on the unitary finite-dimensional representations of the Weyl algebra withqbeingNth primitive root of unity. Parameters of the finite-dimensional representation of the local Weyl algebra form the classical discrete integrable system. Nontrivial dynamics of the classical counterpart corresponds to isospectral transformations of the spin system. Similarity operators are constructed with the help of modified Baxter'sQ-operators. The classical counterpart of the modifiedQ-operator for the initial homogeneous spin chain is a Bäcklund transformation. This transformation creates an extra Hirota-type soliton in a parameterization of the chain structure. Special choice of values of solitonic amplitudes yields a degeneration of spin eigenstates, leading to the quantum separation of variables, or the functional Bethe ansatz. A projector to the separated eigenstates is constructed explicitly as a product of modifiedQ-operators.

2020 ◽  
pp. 1-14
Author(s):  
GENQIANG LIU ◽  
YANG LI

Abstract In 1996, a q-deformation of the universal enveloping algebra of the Schrödinger Lie algebra was introduced in Dobrev et al. [J. Phys. A 29 (1996) 5909–5918.]. This algebra is called the quantum Schrödinger algebra. In this paper, we study the Bernstein-Gelfand-Gelfand (BGG) category $\mathcal{O}$ for the quantum Schrödinger algebra $U_q(\mathfrak{s})$ , where q is a nonzero complex number which is not a root of unity. If the central charge $\dot z\neq 0$ , using the module $B_{\dot z}$ over the quantum Weyl algebra $H_q$ , we show that there is an equivalence between the full subcategory $\mathcal{O}[\dot Z]$ consisting of modules with the central charge $\dot z$ and the BGG category $\mathcal{O}^{(\mathfrak{sl}_2)}$ for the quantum group $U_q(\mathfrak{sl}_2)$ . In the case that $\dot z = 0$ , we study the subcategory $\mathcal{A}$ consisting of finite dimensional $U_q(\mathfrak{s})$ -modules of type 1 with zero action of Z. We directly construct an equivalence functor from $\mathcal{A}$ to the category of finite dimensional representations of an infinite quiver with some quadratic relations. As a corollary, we show that the category of finite dimensional $U_q(\mathfrak{s})$ -modules is wild.


1966 ◽  
Vol 27 (2) ◽  
pp. 531-542 ◽  
Author(s):  
G. Hochschild ◽  
G. D. Mostow

Let G be a complex analytic group, and let A be the representation space of a finite-dimensional complex analytic representation of G. We consider the cohomology for G in A, such as would be obtained in the usual way from the complex of holomorphic cochains for G in A. Actually, we shall use a more conceptual categorical definition, which is equivalent to the explicit one by cochains. In the context of finite-dimensional representation theory, nothing substantial is lost by assuming that G is a linear group. Under this assumption, it is the main purpose of this paper to relate the holomorphic cohomology of G to Lie algebra cohomology, and to the rational cohomology, in the sense of [1], of algebraic hulls of G. This is accomplished by using the known structure theory for complex analytic linear groups in combination with certain easily established results concerning the cohomology of semidirect products. The main results are Theorem 4.1 (whose hypothesis is always satisfied by a complex analytic linear group) and Theorems 5.1 and 5.2. These last two theorems show that the usual abundantly used connections between complex analytic representations of complex analytic groups and rational representations of algebraic groups extend fully to the superstructure of cohomology.


2014 ◽  
Vol 150 (9) ◽  
pp. 1579-1606 ◽  
Author(s):  
Yves Benoist ◽  
Jean-François Quint

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ be a connected real semisimple Lie group, $V$ be a finite-dimensional representation of $G$ and $\mu $ be a probability measure on $G$ whose support spans a Zariski-dense subgroup. We prove that the set of ergodic $\mu $-stationary probability measures on the projective space $\mathbb{P}(V)$ is in one-to-one correspondence with the set of compact $G$-orbits in $\mathbb{P}(V)$. When $V$ is strongly irreducible, we prove the existence of limits for the empirical measures. We prove related results over local fields as the finiteness of the set of ergodic $\mu $-stationary measures on the flag variety of $G$.


2009 ◽  
Vol 20 (01) ◽  
pp. 45-76
Author(s):  
MAGNUS B. LANDSTAD ◽  
NADIA S. LARSEN

For a Hecke pair (G, H) and a finite-dimensional representation σ of H on Vσ with finite range, we consider a generalized Hecke algebra [Formula: see text], which we study by embedding the given Hecke pair in a Schlichting completion (Gσ, Hσ) that comes equipped with a continuous extension σ of Hσ. There is a (non-full) projection [Formula: see text] such that [Formula: see text] is isomorphic to [Formula: see text]. We study the structure and properties of C*-completions of the generalized Hecke algebra arising from this corner realisation, and via Morita–Fell–Rieffel equivalence, we identify, in some cases explicitly, the resulting proper ideals of [Formula: see text]. By letting σ vary, we can compare these ideals. The main focus is on the case with dim σ = 1 and applications include ax + b-groups and the Heisenberg group.


2001 ◽  
Vol 16 (29) ◽  
pp. 4769-4801 ◽  
Author(s):  
KONSTANTIN G. BORESKOV ◽  
JUAN CARLOS LOPEZ VIEYRA ◽  
ALEXANDER V. TURBINER

It is shown that the F4 rational and trigonometric integrable systems are exactly-solvable for arbitrary values of the coupling constants. Their spectra are found explicitly while eigenfunctions are by pure algebraic means. For both systems new variables are introduced in which the Hamiltonian has an algebraic form being also (block)-triangular. These variables are invariant with respect to the Weyl group of F4 root system and can be obtained by averaging over an orbit of the Weyl group. An alternative way of finding these variables exploiting a property of duality of the F4 model is presented. It is demonstrated that in these variables the Hamiltonian of each model can be expressed as a quadratic polynomial in the generators of some infinite-dimensional Lie algebra of differential operators in a finite-dimensional representation. Both Hamiltonians preserve the same flag of spaces of polynomials and each subspace of the flag coincides with the finite-dimensional representation space of this algebra. Quasi-exactly-solvable generalization of the rational F4 model depending on two continuous and one discrete parameters is found.


Sign in / Sign up

Export Citation Format

Share Document