finite dimensional representation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Tim Kobert ◽  
Claus Scheiderer

AbstractLet K be a compact Lie group and V a finite-dimensional representation of K. The orbitope of a vector $$x\in V$$ x ∈ V is the convex hull $${\mathscr {O}}_x$$ O x of the orbit Kx in V. We show that if V is polar then $${\mathscr {O}}_x$$ O x is a spectrahedron, and we produce an explicit linear matrix inequality representation. We also consider the coorbitope $${\mathscr {O}}_x^o$$ O x o , which is the convex set polar to $${\mathscr {O}}_x$$ O x . We prove that $${\mathscr {O}}_x^o$$ O x o is the convex hull of finitely many K-orbits, and we identify the cases in which $${\mathscr {O}}_x^o$$ O x o is itself an orbitope. In these cases one has $${\mathscr {O}}_x^o=c\cdot {\mathscr {O}}_x$$ O x o = c · O x with $$c>0$$ c > 0 . Moreover we show that if x has “rational coefficients” then $${\mathscr {O}}_x^o$$ O x o is again a spectrahedron. This provides many new families of doubly spectrahedral orbitopes. All polar orbitopes that are derived from classical semisimple Lie algebras can be described in terms of conditions on singular values and Ky Fan matrix norms.



2021 ◽  
Vol 32 (1) ◽  
pp. 127-137
Author(s):  
G. Singh ◽  

Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL2(Z). Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data.



2020 ◽  
pp. 1-39
Author(s):  
Andreas Čap ◽  
Christoph Harrach ◽  
Pierre Julg

Let [Formula: see text] be a semisimple Lie group with finite center, [Formula: see text] a maximal compact subgroup, and [Formula: see text] a parabolic subgroup. Following ideas of P. Y. Gaillard, one may use [Formula: see text]-invariant differential forms on [Formula: see text] to construct [Formula: see text]-equivariant Poisson transforms mapping differential forms on [Formula: see text] to differential forms on [Formula: see text]. Such invariant forms can be constructed using finite-dimensional representation theory. In this general setting, we first prove that the transforms that always produce harmonic forms are exactly those that descend from the de Rham complex on [Formula: see text] to the associated Bernstein–Gelfand–Gelfand (or BGG) complex in a well defined sense. The main part of this paper is devoted to an explicit construction of such transforms with additional favorable properties in the case that [Formula: see text]. Thus, [Formula: see text] is [Formula: see text] with its natural CR structure and the relevant BGG complex is the Rumin complex, while [Formula: see text] is complex hyperbolic space of complex dimension [Formula: see text]. The construction is carried out both for complex and for real differential forms and the compatibility of the transforms with the natural operators that are available on their sources and targets are analyzed in detail.



2020 ◽  
Vol 4 ◽  
pp. 153
Author(s):  
Dennis Bonatsos ◽  
C. Daskaloyannis ◽  
P. Kolokotronis ◽  
D. Lenis

The symmetry algebra of the two-dimensional quantum harmonic oscillator with rational ratio of frequencies is identified as a non-linear extension of the u(2) algebra. The finite dimensional representation modules of this algebra are studied and the energy eigenvalues are de- termined using algebraic methods of general applicability to quantum superintegrable systems.



Universe ◽  
2019 ◽  
Vol 5 (8) ◽  
pp. 184 ◽  
Author(s):  
Victor Miguel Banda Guzmán ◽  
Mariana Kirchbach

The momentum-independent Casimir operators of the homogeneous spin-Lorentz group are employed in the construction of covariant projector operators, which can decompose anyone of its reducible finite-dimensional representation spaces into irreducible components. One of the benefits from such operators is that any one of the finite-dimensional carrier spaces of the Lorentz group representations can be equipped with Lorentz vector indices because any such space can be embedded in a Lorentz tensor of a properly-designed rank and then be unambiguously found by a projector. In particular, all the carrier spaces of the single-spin-valued Lorentz group representations, which so far have been described as 2 ( 2 j + 1 ) column vectors, can now be described in terms of Lorentz tensors for bosons or Lorentz tensors with the Dirac spinor component, for fermions. This approach facilitates the construct of covariant interactions of high spins with external fields in so far as they can be obtained by simple contractions of the relevant S O ( 1 , 3 ) indices. Examples of Lorentz group projector operators for spins varying from 1 / 2 –2 and belonging to distinct product spaces are explicitly worked out. The decomposition of multiple-spin-valued product spaces into irreducible sectors suggests that not only the highest spin, but all the spins contained in an irreducible carrier space could correspond to physical degrees of freedom.



2019 ◽  
Vol 22 (07) ◽  
pp. 1950017
Author(s):  
Pedro de Carvalho Cayres Pinto ◽  
Hans-Christian Herbig ◽  
Daniel Herden ◽  
Christopher Seaton

Let [Formula: see text] be a finite-dimensional representation of the group [Formula: see text] of [Formula: see text] matrices with complex coefficients and determinant one. Let [Formula: see text] be the algebra of [Formula: see text]-invariant polynomials on [Formula: see text]. We present a calculation of the Hilbert series [Formula: see text] as well as formulas for the first four coefficients of the Laurent expansion of [Formula: see text] at [Formula: see text].



2019 ◽  
Vol 71 (1) ◽  
pp. 93-111 ◽  
Author(s):  
Kristin Courtney ◽  
Tatiana Shulman

AbstractWe characterize the class of RFD $C^{\ast }$-algebras as those containing a dense subset of elements that attain their norm under a finite-dimensional representation. We show further that this subset is the whole space precisely when every irreducible representation of the $C^{\ast }$-algebra is finite-dimensional, which is equivalent to the $C^{\ast }$-algebra having no simple infinite-dimensional AF subquotient. We apply techniques from this proof to show the existence of elements in more general classes of $C^{\ast }$-algebras whose norms in finite-dimensional representations fit certain prescribed properties.



Sign in / Sign up

Export Citation Format

Share Document