Analysis of skewed data by using compound Poisson exponential distribution with applications to insurance claims

Author(s):  
Mohammed A. Meraou ◽  
Noriah M. Al-Kandari ◽  
Mohammad Z. Raqab ◽  
Debasis Kundu
Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 891 ◽  
Author(s):  
Jiechang Ruan ◽  
Wenguang Yu ◽  
Ke Song ◽  
Yihan Sun ◽  
Yujuan Huang ◽  
...  

In this paper, we propose a new generalized Gerber–Shiu discounted penalty function for a compound Poisson risk model, which can be used to study the moments of the ruin time. First, by taking derivatives with respect to the original Gerber–Shiu discounted penalty function, we construct a relation between the original Gerber–Shiu discounted penalty function and our new generalized Gerber–Shiu discounted penalty function. Next, we use Laplace transform to derive a defective renewal equation for the generalized Gerber–Shiu discounted penalty function, and give a recursive method for solving the equation. Finally, when the claim amounts obey the exponential distribution, we give some explicit expressions for the generalized Gerber–Shiu discounted penalty function. Numerical illustrations are also given to study the effect of the parameters on the generalized Gerber–Shiu discounted penalty function.


2018 ◽  
Vol 2 (1) ◽  
pp. 68-79
Author(s):  
Muhammad Zubair ◽  
Ayman Alzaatreh ◽  
M. H. Tahir ◽  
Muhammad Mansoor ◽  
Manat Mustafa

2002 ◽  
Vol 7 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Antanas Karoblis

The exponential distribution and the Erlang distribution function are been used in numerous areas of mathematics, and specifically in the queueing theory. Such and similar applications emphasize the importance of estimation of error of approximation by the Erlang distribution function. The article gives an analysis and technique of error’s estimation of an accuracy of such approximation, especially in some specific cases.


Author(s):  
Hazim Mansour Gorgees ◽  
Bushra Abdualrasool Ali ◽  
Raghad Ibrahim Kathum

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.


Author(s):  
Parisa Torkaman

The generalized inverted exponential distribution is introduced as a lifetime model with good statistical properties. This paper, the estimation of the probability density function and the cumulative distribution function of with five different estimation methods: uniformly minimum variance unbiased(UMVU), maximum likelihood(ML), least squares(LS), weighted least squares (WLS) and percentile(PC) estimators are considered. The performance of these estimation procedures, based on the mean squared error (MSE) by numerical simulations are compared. Simulation studies express that the UMVU estimator performs better than others and when the sample size is large enough the ML and UMVU estimators are almost equivalent and efficient than LS, WLS and PC. Finally, the result using a real data set are analyzed.


Sign in / Sign up

Export Citation Format

Share Document