A Review on Performance of Absorption Refrigeration System Using New Working Pairs and Nano-particles

Author(s):  
Jagdish Shanabhai Talpada ◽  
P. V. Ramana
Author(s):  
Leonardo Cavalheiro Martinez ◽  
Wellington Balmant ◽  
Iago Costa ◽  
Matias Nicolas Muñoz ◽  
Luiz Rigatti ◽  
...  

2014 ◽  
Vol 953-954 ◽  
pp. 66-73
Author(s):  
Yan Ling Liu ◽  
Xue Zeng Shi ◽  
Yuan Yu

This paper presents the design of a solar/gas driving double effect LiBr-H2O absorption system. In order to use solar energy more efficiently, a new kind of solar/gas driving double effect LiBr-H2O absorption system is designed. In this system, the high-pressure generator is driven by conventional energy, natural gas, and solar energy together with water vapor generated in the high-pressure generator, which supplies energy to the low-pressure generator for a double effect absorption system. Simulation results illustrate that this kind of system is feasible and economical. Economic evaluation of several systems is also given in this paper in order to get a clear knowledge of the energy consumption of the system.


2014 ◽  
Vol 18 (2) ◽  
pp. 577-590
Author(s):  
Hamed Monsef ◽  
Naghash Zadegan ◽  
Koroush Javaherdeh

In this investigation, a low capacity absorption system has been designed and constructed where the mechanical pump has been replaced with a bubble pump, reducing the cost and eliminating the electrical power. Initially, a test rig bubble pump has been built with a single Pyrex tube to test the effect of different parameters on pumping flow rate. An absorption refrigeration system with a capacity of 2.5 kW has been designed and constructed. Results have shown that a bubble pump with five horizontal tubes with 2.5 mm diameter and submergence ratio of 0.4 has the best performance for this low capacity absorption refrigeration system. The COP of this structure was about 0.51 and mathematical modeling shows that increasing the solution concentration at generator outlet decreases the COP of the system.


Sign in / Sign up

Export Citation Format

Share Document