A new algorithm for microwave radiometer remote sensing of sea surface salinity without influence of wind

2008 ◽  
Vol 29 (23) ◽  
pp. 6789-6800
Author(s):  
X. B. Yin ◽  
Z. Z. Wang ◽  
Y. G. Liu ◽  
Y. C. Cheng
2020 ◽  
Vol 12 (15) ◽  
pp. 2425
Author(s):  
Justino Martínez ◽  
Verónica González-Gambau ◽  
Carolina Gabarró ◽  
Estrella Olmedo

This book celebrates the ten year anniversary of the Barcelona Expert Center by presenting recent contributions related to the topics on which the team has been working during those years. The Barcelona Expert Center’s expertise covers a wide variety of remote sensing fields, but the main focus of the research is on the SMOS data processing and its ocean, land, and ice applications. This book contains 14 scientific papers addressing topics that go from the description of the new data processing algorithms that are implemented in the last version of the operational SMOS level 1 processor to scientific applications derived from SMOS: results on the sea-surface salinity assimilation in coastal models, synergies of the sea-surface salinity with temperature and chlorophyll and their impact on the better retrieval of ocean surface currents, quality assessment of SMOS-derived sea ice thickness, sea-surface salinity, and soil moisture products, among others. Moreover, one of the papers verifies the potential of the future Copernicus Imaging Microwave Radiometer (CIMR) mission within the CMEMS sea-surface salinity (SSS) operational production after the SMOS era.


2019 ◽  
Vol 11 (15) ◽  
pp. 1818 ◽  
Author(s):  
Daniele Ciani ◽  
Rosalia Santoleri ◽  
Gian Luigi Liberti ◽  
Catherine Prigent ◽  
Craig Donlon ◽  
...  

We present a study on the potential of the Copernicus Imaging Microwave Radiometer (CIMR) mission for the global monitoring of Sea-Surface Salinity (SSS) using Level-4 (gap-free) analysis processing. Space-based SSS are currently provided by the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites. However, there are no planned missions to guarantee continuity in the remote SSS measurements for the near future. The CIMR mission is in a preparatory phase with an expected launch in 2026. CIMR is focused on the provision of global coverage, high resolution sea-surface temperature (SST), SSS and sea-ice concentration observations. In this paper, we evaluate the mission impact within the Copernicus Marine Environment Monitoring Service (CMEMS) SSS processing chain. The CMEMS SSS operational products are based on a combination of in situ and satellite (SMOS) SSS and high-resolution SST information through a multivariate optimal interpolation. We demonstrate the potential of CIMR within the CMEMS SSS operational production after the SMOS era. For this purpose, we implemented an Observing System Simulation Experiment (OSSE) based on the CMEMS MERCATOR global operational model. The MERCATOR SSSs were used to generate synthetic in situ and CIMR SSS and, at the same time, they provided a reference gap-free SSS field. Using the optimal interpolation algorithm, we demonstrated that the combined use of in situ and CIMR observations improves the global SSS retrieval compared to a processing where only in situ observations are ingested. The improvements are observed in the 60% and 70% of the global ocean surface for the reconstruction of the SSS and of the SSS spatial gradients, respectively. Moreover, the study highlights the CIMR-based salinity patterns are more accurate both in the open ocean and in coastal areas. We conclude that CIMR can guarantee continuity for accurate monitoring of the ocean surface salinity from space.


2019 ◽  
Vol 11 (3) ◽  
pp. 217 ◽  
Author(s):  
Yan Li ◽  
Hao Liu ◽  
Aili Zhang

The Water Cycle Observation Mission (WCOM) is an Earth science mission focused on the observation of the water cycle global climate change intensity through three different payloads. WCOM’s main payload is an interferometric microwave imager (IMI). IMI is a tri-frequency, one-dimensional aperture synthesis microwave radiometer operating at the L-, S-, and C-bands to perform measurements of soil moisture and ocean salinity. Focusing on sea surface salinity (SSS), an end-to-end simulator of WCOM/IMI has been realized and tested on climatological data. Results indicate a general agreement between original and retrieved SSS, with a single measurement root mean square error of 0.26 psu and with an orbital measurement of 0.17 psu in open sea. In accordance with previous studies, good results are obtained in open sea, while strong contamination is observed in coastal areas.


Author(s):  
Yazan Hejazin ◽  
W. Linwood Jones ◽  
Andrea Santos-Garcia ◽  
Maria Marta Jacob ◽  
Salem Fawwaz El-Nimri

2018 ◽  
Vol 56 (9) ◽  
pp. 5525-5536 ◽  
Author(s):  
Nina Hoareau ◽  
Antonio Turiel ◽  
Marcos Portabella ◽  
Joaquim Ballabrera-Poy ◽  
Jur Vogelzang

2020 ◽  
Author(s):  
Roberto Sabia ◽  
Estrella Olmedo ◽  
Giampiero Cossarini ◽  
Aida Alvera-Azcárate ◽  
Veronica Gonzalez-Gambau ◽  
...  

<p>ESA SMOS satellite [1] has been providing first-ever Sea Surface Salinity (SSS) measurements from space for over a decade now. Until recently, inherent algorithm limitations or external interferences hampered a reliable provision of satellite SSS data in semi-enclosed basin such as the Mediterranean Sea. This has been however overcome through different strategies in the retrieval scheme and data filtering approach [2, 3]. This recent capability has been in turn used to infer the spatial and temporal distribution of Total Alkalinity (TA - a crucial parameter of the marine carbonate system) in the Mediterranean, exploiting basin-specific direct relationships existing between salinity and TA.</p><p>Preliminary results [4] focused on the differences existing in several parameterizations [e.g, 5] relating these two variables, and how they vary over a seasonal to interannual timescale.</p><p>Currently, to verify the consistency and accuracy of the derived products, these data are being validated against a proper ensemble of in-situ, climatology and model outputs within the Mediterranean basin. An error propagation exercise is also being planned to assess how uncertainties in the satellite data would translate into the final products accuracy.</p><p>The resulting preliminary estimates of Alkalinity in the Mediterranean Sea will be linked to the overall carbonate system in the broader context of Ocean Acidification assessment and marine carbon cycle.</p><p>References:</p><p>[1] J. Font et al., "SMOS: The Challenging Sea Surface Salinity Measurement From Space," in Proceedings of the IEEE, vol. 98, no. 5, pp. 649-665, May 2010. doi: 10.1109/JPROC.2009.2033096</p><p>[2] Olmedo, E., J. Martinez, A. Turiel, J. Ballabrera-Poy, and M. Portabella,  “Debiased non-Bayesian retrieval: A novel approach to SMOS Sea Surface Salinity”. Remote Sensing of Environment 193, 103-126 (2017).</p><p>[3] Alvera-Azcárate, A., A. Barth, G. Parard, J.-M. Beckers, Analysis of SMOS sea surface salinity data using DINEOF, In Remote Sensing of Environment, Volume 180, 2016, Pages 137-145, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2016.02.044.</p><p>[4] Sabia, R., E. Olmedo, G. Cossarini, A. Turiel, A. Alvera-Azcárate, J. Martinez, D. Fernández-Prieto, Satellite-driven preliminary estimates of Total Alkalinity in the Mediterranean basin, Geophysical Research Abstracts, Vol. 21, EGU2019-17605, EGU General Assembly 2019, Vienna, Austria, April 7-12, 2019.</p><p>[5] Cossarini, G., Lazzari, P., and Solidoro, C.: Spatiotemporal variability of alkalinity in the Mediterranean Sea, Biogeosciences, 12, 1647-1658, https://doi.org/10.5194/bg-12-1647-2015, 2015.</p><p> </p><p> </p>


2008 ◽  
Author(s):  
Nicolas Reul ◽  
Joseph Tenerelli ◽  
Bertrand Chapron ◽  
Sebastien Guimbard ◽  
Stephane-S. Picard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document