ocean surface currents
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Hauke Blanken ◽  
Caterina Valeo ◽  
Charles Hannah ◽  
Usman T. Khan ◽  
Tamás Juhász

This paper proposes a fuzzy number—based framework for quantifying and propagating uncertainties through a model for the trajectories of objects drifting at the ocean surface. Various sources of uncertainty that should be considered are discussed. This model is used to explore the effect of parameterizing direct wind drag on the drifting object based on its geometry, and using measured winds to parameterize shear and rotational dynamics in the ocean surface currents along with wave-driven circulation and near-surface wind shear. Parameterizations are formulated in a deterministic manner that avoids the commonly required specification of empirical leeway coefficients. Observations of ocean currents and winds at Ocean Station Papa in the northeast Pacific are used to force the trajectory model in order to focus on uncertainties arising from physical processes, rather than uncertainties introduced by the use of atmospheric and hydrodynamic models. Computed trajectories are compared against observed trajectories from five different types of surface drifters, and optimal combinations of forcing parameterizations are identified for each type of drifter. The model performance is assessed using a novel skill metric that combines traditional assessment of trajectory accuracy with penalties for overestimation of uncertainty. Comparison to the more commonly used leeway method shows similar performance, without requiring the specification of empirical coefficients. When using optimal parameterizations, the model is shown to correctly identify the area in which drifters are expected to be found for the duration of a seven day simulation.


2021 ◽  
Vol 13 (20) ◽  
pp. 4088
Author(s):  
He Yan ◽  
Qianru Hou ◽  
Guodong Jin ◽  
Xing Xu ◽  
Gong Zhang ◽  
...  

Velocity estimation of ocean surface currents is of great significance in the fields of the fishery, shipping, sewage discharge, and military affairs. Over the last decade, along-track interferometric synthetic aperture radar (along-track InSAR) has been demonstrated to be one of the important instruments for large-area and high-resolution ocean surface current velocity estimation. The calculation method of the traditional ocean surface current velocity, as influenced by the large-scale wave orbital velocity and the Bragg wave phase velocity, cannot easily separate the current velocity, characterized by large error and low efficiency. In this paper, a novel velocity estimation method of ocean surface currents is proposed based on Conditional Generative Adversarial Networks (CGANs). The main processing steps are as follows: firstly, the known ocean surface current field diagrams and their corresponding interferometric phase diagrams are constructed as the training dataset; secondly, the estimation model of the ocean surface current field is constructed based on the pix2pix algorithm and trained by the training dataset; finally, the interferometric phase diagrams in the test dataset are input into the trained model. In the simulation experiment, processing results of the proposed method are compared with those of traditional ocean surface current velocity estimation methods, which demonstrate the efficiency and effectiveness of the novel method.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chanhyung Jeon ◽  
Jae-Hun Park ◽  
Maureen Kennelly ◽  
Erran Sousa ◽  
D. Randolph Watts ◽  
...  

A current- and pressure-recording inverted echo sounder (CPIES) placed on the sea floor monitors aspects of the physical ocean environment for periods of months to years. Until recently, acoustic telemetry of daily-processed data was the existing method for data acquisition from CPIES without full instrument recovery. However, this approach, which requires positioning a ship at the mooring site and operator time, is expensive and time-consuming. Here, we introduce a new method of obtaining data remotely from CPIES using a popup-data-shuttle (PDS), which enables straightforward data acquisition without a ship. The PDS data subsampled from CPIES has 30–60 min temporal resolution. The PDS has a scheduled pop-up-type release system, so each data pod floats to the sea surface at a user-specified date and relays the recorded data via the Iridium satellite system. We demonstrated the capability of an array of PDS-CPIES via two successful field experiments in the Arctic Ocean. The data acquired through the PDS were in agreement with the fully recovered datasets. An example of the data retrieved from the PDS shows that time-varying signals of tides and high-frequency internal waves were well captured. GPS-tracked trajectories of the PDS floating free at the sea surface can provide insights into ice drift or ocean surface currents. This PDS technology provides an alternative method for remote deep-ocean mooring data acquisition.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Kate Wheeling

Researchers turn to the shipping industry for data on ocean surface currents.


2021 ◽  
Vol 13 (12) ◽  
pp. 2389
Author(s):  
Daniele Ciani ◽  
Elodie Charles ◽  
Bruno Buongiorno Buongiorno Nardelli ◽  
Marie-Hélène Rio ◽  
Rosalia Santoleri

Measuring the ocean surface currents at high spatio-temporal resolutions is crucial for scientific and socio-economic applications. Since the early 1990s, the synoptic and global-scale monitoring of the ocean surface currents has been provided by constellations of radar altimeters. By construction, altimeter constellations provide only the geostrophic component of the marine surface currents. In addition, given the effective spatial-temporal resolution of the altimeter-derived products (O (100 km) and O (10 days), respectively), only the largest ocean mesoscale features can be resolved. In order to enhance the altimeter system capabilities, we propose a synergistic use of high resolution sea surface Chlorophyll observations (Chl) and altimeter-derived currents’ estimates. The study is focused on the Mediterranean Sea, where the most energetic signals are found at spatio-temporal scales up to 10 km and a few days. The proposed method allows for inferring the marine surface currents from the evolution of the Chl field, relying on altimeter-derived currents as a first-guess estimate. The feasibility of this approach is tested through an Observing System Simulation Experiment, starting from biogeochemical model outputs distributed by the European Copernicus Marine Service. Statistical analyses based on the 2017 daily data showed that our approach can improve the altimeter-derived currents accuracy up to 50%, also enhancing their effective spatial resolution up to 30 km. Moreover, the retrieved currents exhibit larger temporal variability than the altimeter estimates over annual to weekly timescales. Our method is mainly limited to areas/time periods where/when Chl gradients are larger and are modulated by the marine currents’ advection. Its application is thus more efficient when the surface Chl evolution is not dominated by the biological activity, mostly occurring in the mid-February to mid-March time window in the Mediterranean Sea. Preliminary tests on the method applicability to satellite-derived data are also presented and discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Wu ◽  
Zhaomin Wang ◽  
Chengyan Liu

The importance of considering ocean surface currents in ice-ocean stress calculation in the North Atlantic Ocean and Arctic sea ice is investigated for the first time using a global coupled ocean-sea ice model. Considering ocean surface currents in ice-ocean stress calculation weakens the ocean surface stress and Ekman pumping by about 7.7 and 15% over the North Atlantic Ocean, respectively. It also significantly reduces the mechanical energy input to ageostrophic and geostrophic currents, and weakens the mean and eddy kinetic energy by reducing the energy conversion rates of baroclinic and barotropic pathways. Furthermore, the strength of the Atlantic Meridional Overturning Circulation (AMOC), the Nordic Seas MOC, and the North Atlantic subpolar gyre are found to be reduced considerably (by 14.3, 31.0, and 18.1%, respectively). The weakened AMOC leads to a 0.12 PW reduction in maximum northward ocean heat transport, resulting in a reduced surface heat loss and lower sea surface temperature over the North Atlantic Ocean. This reduction also leads to a shrink in sea ice extent and an attenuation of sea ice thickness. These findings highlight the importance of properly considering both the geostrophic and ageostrophic components of ocean surface currents in ice-ocean stress calculation on ocean circulation and climate studies.


2021 ◽  
Author(s):  
Daniele Ciani ◽  
Marie-Hélène Rio ◽  
Bruno Buongiorno Nardelli ◽  
Stéphanie Guinehut ◽  
Elodie Charles ◽  
...  

<p>Measuring the ocean surface currents at high spatio-temporal resolutions is crucial for scientific and socio-economic applications. Since the early 1990s, the synoptic and global-scale monitoring of the ocean surface currents has been provided by constellations of Radar Altimeters. The Altimeter observations enable to derive the geostrophic component of the surface currents with effective spatial-temporal resolutions O(100 km) and O(10 days), respectively. Therefore, only the largest mesoscale oceanic features can be accurately resolved. In order to enhance the altimeter system capabilities, we propose a synergistic use of high resolution, satellite-derived Sea Surface Temperature (SST), Chlorophyll concentrations (Chl) and Altimeter-derived currents. Our approach is tested in both global-scale and regional contexts.<br>At global scale, relying on past numerical studies, we perform a sensitivity experiment based on several gap-free SST datasets, emphasizing strengths and weaknesses in ocean currents applications. Overall, the comparison with in-situ measured currents shows that our synergistic method can improve the altimeter estimates up to 30% locally.<br>Then, our method is also implemented with Chl data in the  Mediterranean Sea, where the most energetic variable signals are found at spatio-temporal scales up to 10 km and few days. We test the method feasibility in an Observing System Simulation Experiment relying on model outputs of the European Copernicus Marine Service. Statistical analyses based on the 2017 daily data show that our approach can improve the altimeter-derived currents accuracy up to 50% at the basin scale, also enhancing the effective spatial-temporal resolutions up to 30 km and less than 10 days, respectively. The method efficiency decreases when the surface Chl patterns are dominated by the biological activity rather than the currents advection, which mostly occurs in the mid-February to mid-March time window. Preliminary tests on the method applicability to satellite-derived data are also presented and discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document