New 500 m spatial resolution land cover map of the western insular Southeast Asia region

2008 ◽  
Vol 29 (20) ◽  
pp. 6075-6081 ◽  
Author(s):  
J. Miettinen ◽  
C. M. Wong ◽  
S. C. Liew
2016 ◽  
Vol 7 (7) ◽  
pp. 701-710 ◽  
Author(s):  
Jukka Miettinen ◽  
Chenghua Shi ◽  
Soo Chin Liew

2020 ◽  
Vol 29 (3) ◽  
pp. 257-262
Author(s):  
Mukesh Singh Boori ◽  
Komal Choudhary ◽  
Alexander Kupriyanov

2012 ◽  
Vol 3 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Jukka Miettinen ◽  
Chenghua Shi ◽  
Wee Juan Tan ◽  
Soo Chin Liew

2018 ◽  
Vol 10 (8) ◽  
pp. 1212 ◽  
Author(s):  
Xiaohong Yang ◽  
Zhong Xie ◽  
Feng Ling ◽  
Xiaodong Li ◽  
Yihang Zhang ◽  
...  

Super-resolution land cover mapping (SRM) is a method that aims to generate land cover maps with fine spatial resolutions from the original coarse spatial resolution remotely sensed image. The accuracy of the resultant land cover map produced by existing SRM methods is often limited by the errors of fraction images and the uncertainty of spatial pattern models. To address these limitations in this study, we proposed a fuzzy c-means clustering (FCM)-based spatio-temporal SRM (FCM_STSRM) model that combines the spectral, spatial, and temporal information into a single objective function. The spectral term is constructed with the FCM criterion, the spatial term is constructed with the maximal spatial dependence principle, and the temporal term is characterized by the land cover transition probabilities in the bitemporal land cover maps. The performance of the proposed FCM_STSRM method is assessed using data simulated from the National Land Cover Database dataset and real Landsat images. Results of the two experiments show that the proposed FCM_STSRM method can decrease the influence of fraction errors by directly using the original images as the input and the spatial pattern uncertainty by inheriting land cover information from the existing fine resolution land cover map. Compared with the hard classification and FCM_SRM method applied to mono-temporal images, the proposed FCM_STSRM method produced fine resolution land cover maps with high accuracy, thus showing the efficiency and potential of the novel approach for producing fine spatial resolution maps from coarse resolution remotely sensed images.


Author(s):  
W. Xu ◽  
B. Hays ◽  
R. Fayrer-Hosken ◽  
A. Presotto

The ability of remote sensing to represent ecologically relevant features at multiple spatial scales makes it a powerful tool for studying wildlife distributions. Species of varying sizes perceive and interact with their environment at differing scales; therefore, it is important to consider the role of spatial resolution of remotely sensed data in the creation of distribution models. The release of the Globeland30 land cover classification in 2014, with its 30 m resolution, presents the opportunity to do precisely that. We created a series of Maximum Entropy distribution models for African savanna elephants (<i>Loxodonta africana</i>) using Globeland30 data analyzed at varying resolutions. We compared these with similarly re-sampled models created from the European Space Agency’s Global Land Cover Map (Globcover). These data, in combination with GIS layers of topography and distance to roads, human activity, and water, as well as elephant GPS collar data, were used with MaxEnt software to produce the final distribution models. The AUC (Area Under the Curve) scores indicated that the models created from 600 m data performed better than other spatial resolutions and that the Globeland30 models generally performed better than the Globcover models. Additionally, elevation and distance to rivers seemed to be the most important variables in our models. Our results demonstrate that Globeland30 is a valid alternative to the well-established Globcover for creating wildlife distribution models. It may even be superior for applications which require higher spatial resolution and less nuanced classifications.


Author(s):  
W. Xu ◽  
B. Hays ◽  
R. Fayrer-Hosken ◽  
A. Presotto

The ability of remote sensing to represent ecologically relevant features at multiple spatial scales makes it a powerful tool for studying wildlife distributions. Species of varying sizes perceive and interact with their environment at differing scales; therefore, it is important to consider the role of spatial resolution of remotely sensed data in the creation of distribution models. The release of the Globeland30 land cover classification in 2014, with its 30 m resolution, presents the opportunity to do precisely that. We created a series of Maximum Entropy distribution models for African savanna elephants (<i>Loxodonta africana</i>) using Globeland30 data analyzed at varying resolutions. We compared these with similarly re-sampled models created from the European Space Agency’s Global Land Cover Map (Globcover). These data, in combination with GIS layers of topography and distance to roads, human activity, and water, as well as elephant GPS collar data, were used with MaxEnt software to produce the final distribution models. The AUC (Area Under the Curve) scores indicated that the models created from 600 m data performed better than other spatial resolutions and that the Globeland30 models generally performed better than the Globcover models. Additionally, elevation and distance to rivers seemed to be the most important variables in our models. Our results demonstrate that Globeland30 is a valid alternative to the well-established Globcover for creating wildlife distribution models. It may even be superior for applications which require higher spatial resolution and less nuanced classifications.


2021 ◽  
Vol 87 (6) ◽  
pp. 405-412
Author(s):  
Qiutong Yu ◽  
Wei Liu ◽  
Wesley Nunes Gonçalves ◽  
José Marcato Junior ◽  
Jonathan Li

Multispectral satellite imagery is the primary data source for monitoring land cover change and characterizing land cover globally. However, the consistency of land cover monitoring is limited by the spatial and temporal resolutions of the acquired satellite images. The public availability of daily high-resolution images is still scarce. This paper aims to fill this gap by proposing a novel spatiotemporal fusion method to enhance daily low spatial resolution land cover mapping using a weakly supervised deep convolutional neural network. We merge Sentinel images and moderate resolution imaging spectroradiometer (MODIS )-derived thematic land cover maps under the application background of massive remote sensing data and the large spatial resolution gaps between MODIS data and Sentinel images. The neural network training was conducted on the public data set SEN12MS, while the validation and testing used ground truth data from the 2020 IEEE Geoscience and Remote Sensing Society data fusion contest. The proposed data fusion method shows that the synthesized land cover map has significantly higher spatial resolution than the corresponding MODIS-derived land cover map. The ensemble approach can be implemented for generating high-resolution time series of satellite images by fusing fine images from Sentinel-1 and -2 and daily coarse images from MODIS.


2019 ◽  
Vol 11 (9) ◽  
pp. 1056 ◽  
Author(s):  
Xiao Zhang ◽  
Liangyun Liu ◽  
Xidong Chen ◽  
Shuai Xie ◽  
Yuan Gao

Fine resolution land cover information is a vital foundation of Earth science. In this paper, a novel SPECLib-based operational method is presented for the classification of multi-temporal Landsat imagery using reflectance spectra from the spatial-temporal spectral library (SPECLib) for 30 m land-cover mapping for the whole of China. Firstly, using the European Space Agency (ESA) Climate Change Initiative Global Land Cover (CCI_LC) product and the MODIS Version 6 Nadir bidirectional reflectance distribution function adjusted reflectance (NBAR) product (MCD43A4), a global SPECLib with a spatial resolution of 158.85 km (equivalent to 1.43° at the equator) and a temporal resolution of eight days was developed in the sinusoidal projection. Then, the Landsat datacube covering the whole of China was developed using all available observations of Landsat OLI imagery in 2015. Thirdly, the multi-temporal random forest method based on SPECLib was presented to produce an annual land-cover map with 22 land-cover types using the Landsat datacube. Finally, the annual China land-cover map was validated by two different validation systems using approximately 11,000 interpretation points. The mapping results achieved the overall accuracy of 71.3% and 80.7% and the kappa coefficient of 0.664 and 0.757 for the level-2 validation system (19 land-cover types) and the level-1 validation system (nine land-cover types), respectively. Therefore, the case study in China indicates that the proposed SPECLib method is an operational and accurate method for regional/global fine land-cover mapping at a spatial resolution of 30 m.


Sign in / Sign up

Export Citation Format

Share Document