AN EFFICIENT ALGORITHM FOR FINITE-DIFFERENCE ANALYSES OF HEAT TRANSFER WITH MELTING AND SOLIDIFICATION

1985 ◽  
Vol 8 (6) ◽  
pp. 653-666 ◽  
Author(s):  
J. S. Hsiao
Author(s):  
Lucas Peixoto ◽  
Ane Lis Marocki ◽  
Celso Vieira Junior ◽  
Viviana Mariani

2001 ◽  
Vol 123 (6) ◽  
pp. 1159-1172 ◽  
Author(s):  
Mohammad B. Shafii ◽  
Amir Faghri ◽  
Yuwen Zhang

Analytical models for both unlooped and looped Pulsating Heat Pipes (PHPs) with multiple liquid slugs and vapor plugs are presented in this study. The governing equations are solved using an explicit finite difference scheme to predict the behavior of vapor plugs and liquid slugs. The results show that the effect of gravity on the performance of top heat mode unlooped PHP is insignificant. The effects of diameter, charge ratio, and heating wall temperature on the performance of looped and unlooped PHPs are also investigated. The results also show that heat transfer in both looped and unlooped PHPs is due mainly to the exchange of sensible heat.


2005 ◽  
Vol 127 (5) ◽  
pp. 865-871 ◽  
Author(s):  
Kazuaki Sugawara ◽  
Hiroyuki Yoshikawa ◽  
Terukazu Ota

The LES method was applied to analyze numerically an unsteady turbulent separated and reattached flow and heat transfer in a symmetric expansion plane channel of expansion ratio 2.0. The Smagorinsky model was used in the analysis and fundamental equations were discretized by means of the finite difference method, and their resulting finite difference equations were solved using the SMAC method. The calculations were conducted for Re=15,000. It is found that the present numerical results, in general, agree well with the previous experimental ones. The complicated vortical flow structures in the channel and their correlations with heat transfer characteristics are visualized through various fields of flow quantities.


Sign in / Sign up

Export Citation Format

Share Document