Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere

2016 ◽  
Vol 111 (514) ◽  
pp. 888-898 ◽  
Author(s):  
Emilio Porcu ◽  
Moreno Bevilacqua ◽  
Marc G. Genton
2011 ◽  
Vol 30 (3) ◽  
pp. 123 ◽  
Author(s):  
Markus Kautz ◽  
Jochen Düll ◽  
Joachim Ohser

A large spatio-temporal data set monitoring the annual progress of bark beetle infestation in the Bavarian Forest National Park (Germany) is statistically analysed by means of complex image analysis algorithms. The infestation data were obtained by color-infrared (CIR) aerial image interpretation and cover 10 subsequent years (2001–2010). Newly emerged infestation patches are hypothesized as spatially correlated to locations of previous year’s infestation. Both areas, source patches and subsequently emerged patches, are considered as two disjoint random sets. Their spatio-temporal dependence is analysed by two methods: the classical approach based on the measurement of cross-covariance functions, and a second one based on nearest neighbor distances. The resulting characteristics can be interpreted as pre-disposition probabilities of bark beetle infestation depending on distance to sources. Both methods show a strong short-range preference, which decreases with increasing distances.


Author(s):  
Nawei Liu ◽  
Fei Xie ◽  
Zhenhong Lin ◽  
Mingzhou Jin

In this study, 98 regression models were specified for easily estimating shortest distances based on great circle distances along the U.S. interstate highways nationwide and for each of the continental 48 states. This allows transportation professionals to quickly generate distance, or even distance matrix, without expending significant efforts on complicated shortest path calculations. For simple usage by all professionals, all models are present in the simple linear regression form. Only one explanatory variable, the great circle distance, is considered to calculate the route distance. For each geographic scope (i.e., the national or one of the states), two different models were considered, with and without the intercept. Based on the adjusted R-squared, it was observed that models without intercepts generally have better fitness. All these models generally have good fitness with the linear regression relationship between the great circle distance and route distance. At the state level, significant variations in the slope coefficients between the state-level models were also observed. Furthermore, a preliminary analysis of the effect of highway density on this variation was conducted.


2010 ◽  
Vol 105 (491) ◽  
pp. 1167-1177 ◽  
Author(s):  
Tilmann Gneiting ◽  
William Kleiber ◽  
Martin Schlather

2021 ◽  
Author(s):  
Lindsay Morris

<p><b>Spatial and spatio-temporal phenomena are commonly modelled as Gaussian processes via the geostatistical model (Gelfand & Banerjee, 2017). In the geostatistical model the spatial dependence structure is modelled using covariance functions. Most commonly, the covariance functions impose an assumption of spatial stationarity on the process. That means the covariance between observations at particular locations depends only on the distance between the locations (Banerjee et al., 2014). It has been widely recognized that most, if not all, processes manifest spatially nonstationary covariance structure Sampson (2014). If the study domain is small in area or there is not enough data to justify more complicated nonstationary approaches, then stationarity may be assumed for the sake of mathematical convenience (Fouedjio, 2017). However, relationships between variables can vary significantly over space, and a ‘global’ estimate of the relationships may obscure interesting geographical phenomena (Brunsdon et al., 1996; Fouedjio, 2017; Sampson & Guttorp, 1992). </b></p> <p>In this thesis, we considered three non-parametric approaches to flexibly account for non-stationarity in both spatial and spatio-temporal processes. First, we proposed partitioning the spatial domain into sub-regions using the K-means clustering algorithm based on a set of appropriate geographic features. This allowed for fitting separate stationary covariance functions to the smaller sub-regions to account for local differences in covariance across the study region. Secondly, we extended the concept of covariance network regression to model the covariance matrix of both spatial and spatio-temporal processes. The resulting covariance estimates were found to be more flexible in accounting for spatial autocorrelation than standard stationary approaches. The third approach involved geographic random forest methodology using a neighbourhood structure for each location constructed through clustering. We found that clustering based on geographic measures such as longitude and latitude ensured that observations that were too far away to have any influence on the observations near the locations where a local random forest was fitted were not selected to form the neighbourhood. </p> <p>In addition to developing flexible methods to account for non-stationarity, we developed a pivotal discrepancy measure approach for goodness-of-fit testing of spatio-temporal geostatistical models. We found that partitioning the pivotal discrepancy measures increased the power of the test.</p>


Sign in / Sign up

Export Citation Format

Share Document