scholarly journals Public Transportation Systems: Principles of System Design, Operations Planning and Real-Time Control

2022 ◽  
Vol 88 (1) ◽  
pp. 145-146
Author(s):  
Thomas C. Cornillie
Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 369 ◽  
Author(s):  
Huawei Zhai ◽  
Licheng Cui ◽  
Yu Nie ◽  
Xiaowei Xu ◽  
Weishi Zhang

In order to meet the real-time public travel demands, the bus operators need to adjust the timetables in time. Therefore, it is necessary to predict the variations of the short-term passenger flow. Under the help of the advanced public transportation systems, a large amount of real-time data about passenger flow is collected from the automatic passenger counters, automatic fare collection systems, etc. Using these data, different kinds of methods are proposed to predict future variations of the short-term bus passenger flow. Based on the properties and background knowledge, these methods are classified into three categories: linear, nonlinear and combined methods. Their performances are evaluated in detail in the major aspects of the prediction accuracy, the complexity of training data structure and modeling process. For comparison, some long-term prediction methods are also analyzed simply. At last, it points that, with the help of automatic technology, a large amount of data about passenger flow will be collected, and using the big data technology to speed up the data preprocessing and modeling process may be one of the directions worthy of study in the future.


1995 ◽  
Author(s):  
N Coleman ◽  
A Paz ◽  
M DeVito ◽  
G Papanagopoulos ◽  
T-JLin, Yu, C-F

Author(s):  
Gabriel E. Sánchez-Martínez

Origin–destination matrices provide vital information for service planning, operations planning, and performance measurement of public transportation systems. In recent years, methodological advances have been made in the estimation of origin–destination matrices from disaggregate fare transaction and vehicle location data. Unlike manual origin–destination surveys, these methods provide nearly complete spatial and temporal coverage at minimal marginal cost. Early models inferred destinations on the basis of the proximity of possible destinations to the next origin and disregarded the effect of waiting time, in-vehicle time, and the number of transfers on path choice. The research reported here formulated a dynamic programming model that inferred destinations of public transportation trips on the basis of a generalized disutility minimization objective. The model inferred paths and transfers on multileg journeys and worked on systems that served a mix of gated stations and ungated stops. The model is being used to infer destinations of public transportation trips in Boston, Massachusetts, and is producing better results than could be obtained with earlier models.


Sign in / Sign up

Export Citation Format

Share Document