Multi-Objective Optimization Of Reliability-based Structural Design

1995 ◽  
Vol 15 (1) ◽  
pp. 8-13
Author(s):  
H.J. Horng ◽  
T.W. Lu ◽  
C.H. Tseng
Author(s):  
Masahide Matsumoto ◽  
Jumpei Abe ◽  
Masataka Yoshimura

Abstract Generally, two types of priorities are considered among multiple objectives in the design of machine structures. One of these objectives is named the “hard objective”, which is the absolutely indispensable design requirement. The other is called the “soft objective”, which has lower priority order. This paper proposes a multi-objective structural optimization strategy with priority ranking of those design objectives. Further, this strategy is demonstrated on the actual example of a motorcycle frame structural design which has three design objectives, (1) an increase in static torsional rigidity, (2) a reduction of dynamic response level, and (3) a decrease in the weight of the motorcycle frame.


2016 ◽  
Vol 38 (11-12) ◽  
pp. 1135-1145 ◽  
Author(s):  
Lin Zhao ◽  
Xu Chen ◽  
Yuwen Liang ◽  
Yaojun Ge ◽  
Wen Sun ◽  
...  

2021 ◽  
Author(s):  
Nima Khodadadi ◽  
Siamak Talatahari ◽  
Armin Dadras Eslamlou

Abstract In the present paper, a physics-inspired metaheuristic algorithm is presented to solve multi-objective optimization problems. The algorithm is developed based on the concept of Newtonian cooling law that recently has been employed by the Thermal Exchange Optimization (TEO) algorithm to efficiently solve single-objective optimization problems. The performance of the multi-objective version of TEO (MOTEO) is examined through bi- and tri-objective mathematical problems as well as bi-objective structural design examples. According to the comparisons between the MOTEO and several well-known algorithms, the proposed algorithm can provide quality Pareto fronts with appropriate accuracy, uniformity and coverage for multi-objective problems.


Author(s):  
Alexandre Mathern ◽  
Olof Skogby Steinholtz ◽  
Anders Sjöberg ◽  
Magnus Önnheim ◽  
Kristine Ek ◽  
...  

Abstract The planning and design of buildings and civil engineering concrete structures constitutes a complex problem subject to constraints, for instance, limit state constraints from design codes, evaluated by expensive computations such as finite element (FE) simulations. Traditionally, the focus has been on minimizing costs exclusively, while the current trend calls for good trade-offs of multiple criteria such as sustainability, buildability, and performance, which can typically be computed cheaply from the design parameters. Multi-objective methods can provide more relevant design strategies to find such trade-offs. However, the potential of multi-objective optimization methods remains unexploited in structural concrete design practice, as the expensiveness of structural design problems severely limits the scope of applicable algorithms. Bayesian optimization has emerged as an efficient approach to optimizing expensive functions, but it has not been, to the best of our knowledge, applied to constrained multi-objective optimization of structural concrete design problems. In this work, we develop a Bayesian optimization framework explicitly exploiting the features inherent to structural design problems, that is, expensive constraints and cheap objectives. The framework is evaluated on a generic case of structural design of a reinforced concrete (RC) beam, taking into account sustainability, buildability, and performance objectives, and is benchmarked against the well-known Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a random search procedure. The results show that the Bayesian algorithm performs considerably better in terms of rate-of-improvement, final solution quality, and variance across repeated runs, which suggests it is well-suited for multi-objective constrained optimization problems in structural design.


Sign in / Sign up

Export Citation Format

Share Document