Free vibration analysis of thick laminated plates using a mixed finite element

1994 ◽  
Vol 17 (5) ◽  
pp. 753-759
Author(s):  
Chih‐Ping Wu ◽  
Chih‐Shun Hsu
2007 ◽  
Vol 29 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Tran Ich Thinh ◽  
Ngo Nhu Khoa

A new 6-noded stiffened triangular plate element for the analysis of stiffened composite plates based on Mindlins deformation plate theory has been developed. The stiffened plate element is a combination of basic triangular element and bar component. The element can accommodate any number of arbitrarily oriented stiffeners and obviates the use of mesh lines along the stiffeners. Free vibration analyses of stiffened laminated plates have been carried out with this element and the results are compared with those published. The finite element results show very good matching with the experimental ones.


2013 ◽  
Vol 13 (02) ◽  
pp. 1250056 ◽  
Author(s):  
ATİLLA ÖZÜTOK ◽  
EMRAH MADENCİ

In this study, a mixed-finite element method for free vibration analysis of cross-ply laminated composite beams is presented based on the "Euler–Bernoulli Beam Theory" and "Timoshenko Beam Theory". The Gâteaux differential approach is employed to construct the functionals of laminated beams using the variational method. By using these functionals in the mixed-type finite element method, two beam elements CLBT4 and FSDT8 are derived for the Euler–Bernoulli and Timoshenko beam theories, respectively. The CLBT4 element has four degrees of freedom (DOFs), containing the vertical displacement and bending moment as unknowns at the nodes, whereas the FSDT8 element has eight DOFs, containing the vertical displacement, bending moment, shear force and rotation as unknowns. A computer program is developed to execute the analyses for the present study. The numerical results of free vibration analyses obtained for different boundary conditions are presented and compared with results available in the literature, which indicates the reliability of the present approach.


Sign in / Sign up

Export Citation Format

Share Document